[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Generalized Gale-Shapley Algorithm for a Discrete-Concave Stable-Marriage Model

  • Conference paper
Algorithms and Computation (ISAAC 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2906))

Included in the following conference series:

Abstract

The stable marriage model due to Gale and Shapley is one of the most fundamental two-sided matching models. Recently, Fleiner generalized the model in terms of matroids, and Eguchi and Fujishige extended the matroidal model to the framework of discrete convex analysis. In this paper, we extend their model to a vector version in which indifference on preferences is allowed, and show the existence of a stable solution by a generalization of the Gale-Shapley algorithm.

This work is supported by a Grant-in-Aid of the Ministry of Education, Culture, Sports, Science and Technology of Japan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baïou, M., Balinski, M.: Erratum: The stable allocation (or ordinal transportation) problem. Math. Oper. Res. 27, 662–680 (2002)

    Article  MathSciNet  Google Scholar 

  2. Eguchi, A., Fujishige, S.: An extension of the Gale-Shapley matching algorithm to a pair of M\(^{\natural}\) -concave functions, Discrete Mathematics and Systems Science Research Report 02-05, Osaka University (2002)

    Google Scholar 

  3. Fleiner, T.: A matroid generalization of the stable matching polytope. In: Aardal, K., Gerards, B. (eds.) IPCO 2001. LNCS, vol. 2081, pp. 105–114. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Fleiner, T.: Some results on stable matchings and fixed points, EGRES Technical Report 2002-08 (2002), http://www.cs.elte.hu/egres

  5. Fleiner, T.: A fixed point approach to stable matchings and some applications. Math. Oper. Res. 28, 103–126 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fujishige, S., Yang, Z.: A note on Kelso and Crawford’s gross substitutes condition. Math. Oper. Res. (to appear)

    Google Scholar 

  7. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Amer. Math. Monthl 69, 9–15 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  8. Murota, K.: Convexity and Steinitz’s exchange property. Adv. Math. 124, 272–311 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Murota, K.: Discrete convex analysis. Math. Programming 83, 313–371 (1998)

    MATH  MathSciNet  Google Scholar 

  10. Murota, K.: Discrete Convex Analysis, Philadelphia. Society for Industrial and Applied Mathematics (2003)

    Google Scholar 

  11. Murota, K., Shioura, A.: M-convex function on generalized polymatroid. Math. Oper. Res. 24, 95–105 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Murota, K., Shioura, A.: Relationship of M-/L-convex functions with discrete convex functions by Miller and by Favati–Tardella. Discrete Appl. Math. 115, 151–176 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Murota, K., Tamura, A.: New characterizations of M-convex functions and their applications to economic equilibrium models with indivisibilities. Discrete Appl. Math. (to appear)

    Google Scholar 

  14. Shioura, A.: Fast scaling algorithms for M-convex function minimization with application to the resource allocation problem. Discrete Appl. Math. (to appear)

    Google Scholar 

  15. Tamura, A.: Coordinatewise domain scaling algorithm for M-convex function minimization. In: Cook, W.J., Schulz, A.S. (eds.) IPCO 2002. LNCS, vol. 2337, pp. 21–35. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eguchi, A., Fujishige, S., Tamura, A. (2003). A Generalized Gale-Shapley Algorithm for a Discrete-Concave Stable-Marriage Model . In: Ibaraki, T., Katoh, N., Ono, H. (eds) Algorithms and Computation. ISAAC 2003. Lecture Notes in Computer Science, vol 2906. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24587-2_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24587-2_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20695-8

  • Online ISBN: 978-3-540-24587-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics