[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Reciprocal Content Recommendation for Peer Learning Study Sessions

  • Conference paper
  • First Online:
Artificial Intelligence in Education (AIED 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10947))

Included in the following conference series:

  • 6381 Accesses

Abstract

Recognition of peer learning as a valuable supplement to formal education has lead to a rich literature formalising peer learning as an institutional resource. Facilitating peer learning support sessions alone however, without providing guidance or context, risks being ineffective in terms of any targeted, measurable effects on learning. Building on an existing open-source, student-facing platform called RiPPLE, which recommends peer study sessions based on the availability, competencies and compatibility of learners, this paper aims to supplement these study sessions by providing content from a repository of multiple-choice questions to facilitate topical discussion and aid productiveness. We exploit a knowledge tracing algorithm alongside a simple Gaussian scoring model to select questions that promote relevant learning and that reciprocally meet the expectations of both learners. Primary results using synthetic data indicate that the model works well at scale in terms of the number of sessions and number of items recommended, and capably recommends from a large repository the content that best approximates a proposed difficulty gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 63.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 79.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Evaluated as the probability that a random score under a standard normal distribution is greater than the midpoint between two sequential items, (\(\frac{d}{2}\)).

References

  1. Baker, R.S.J., Corbett, A.T., Aleven, V.: More accurate student modeling through contextual estimation of slip and guess probabilities in bayesian knowledge tracing. In: Woolf, B.P., Aïmeur, E., Nkambou, R., Lajoie, S. (eds.) ITS 2008. LNCS, vol. 5091, pp. 406–415. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69132-7_44

    Chapter  Google Scholar 

  2. Cen, H., Koedinger, K., Junker, B.: Learning factors analysis – a general method for cognitive model evaluation and improvement. In: Ikeda, M., Ashley, K.D., Chan, T.-W. (eds.) ITS 2006. LNCS, vol. 4053, pp. 164–175. Springer, Heidelberg (2006). https://doi.org/10.1007/11774303_17

    Chapter  Google Scholar 

  3. Conole, G.: Review of Pedagogical Models and Their Use in e-Learning. Open University, Milton Keynes (2010)

    Google Scholar 

  4. Corbett, A.: Cognitive computer tutors: solving the two-sigma problem. In: Bauer, M., Gmytrasiewicz, P.J., Vassileva, J. (eds.) UM 2001. LNCS (LNAI), vol. 2109, pp. 137–147. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44566-8_14

    Chapter  Google Scholar 

  5. Corbett, A.T., Anderson, J.R.: Knowledge tracing: modeling the acquisition of procedural knowledge. User Model. User-Adap. Inter. 4(4), 253–278 (1994)

    Article  Google Scholar 

  6. Dawson, S.: A study of the relationship between student communication interaction and sense of community. Internet High. Educ. 9(3), 153–162 (2006)

    Article  Google Scholar 

  7. Drasgow, F., Hulin, C.L.: Item response theory (1990)

    Google Scholar 

  8. Goldschmid, B., Goldschmid, M.L.: Peer teaching in higher education: a review. High. Educ. 5(1), 9–33 (1976)

    Article  Google Scholar 

  9. Guy, I.: Social recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 511–543. Springer, Boston, MA (2015). https://doi.org/10.1007/978-1-4899-7637-6_15

    Chapter  Google Scholar 

  10. Hong, W., Zheng, S., Wang, H., Shi, J.: A job recommender system based on user clustering. J. Comput. 8(8), 1960–1967 (2013)

    Article  Google Scholar 

  11. Khajah, M.M., Huang, Y., González-Brenes, J.P., Mozer, M.C., Brusilovsky, P.: Integrating knowledge tracing and item response theory: A tale of two frameworks. In: Proceedings of Workshop on Personalization Approaches in Learning Environments (PALE 2014) at the 22th International Conference on User Modeling, Adaptation, and Personalization, pp. 7–12. University of Pittsburgh (2014)

    Google Scholar 

  12. Khosravi, H.: Recommendation in personalised peer-learning environments. arXiv preprint arXiv:1712.03077 (2017)

  13. Khosravi, H., Cooper, K., Kitto, K.: Riple: recommendation in peer-learning environments based on knowledge gaps and interests. JEDM-J. Educ. Data Min. 9(1), 42–67 (2017)

    Google Scholar 

  14. Lemire, D., Boley, H., McGrath, S., Ball, M.: Collaborative filtering and inference rules for context-aware learning object recommendation. Interact. Technol. Smart Educ. 2(3), 179–188 (2005)

    Article  Google Scholar 

  15. Mangina, E., Kilbride, J.: Evaluation of keyphrase extraction algorithm and tiling process for a document/resource recommender within e-learning environments. Comput. Educ. 50(3), 807–820 (2008)

    Article  Google Scholar 

  16. van der Meer, J., Scott, C.: Students experiences and perceptions of peer assisted study sessions: towards ongoing improvement. J. Peer Learn. 2(1), 3–22 (2009)

    Google Scholar 

  17. Newcomb, T.: A conversation with theodore newcomb. Psychol. Today, 73–80 (1974)

    Google Scholar 

  18. Pardos, Z., Heffernan, N.: Kt-idem: introducing item difficulty to the knowledge tracing model. In: User Modeling, Adaption and Personalization, pp. 243–254 (2011)

    Google Scholar 

  19. Pavlik Jr., P.I., Cen, H., Koedinger, K.R.: Performance factors analysis-a new alternative to knowledge tracing. Online Submission (2009)

    Google Scholar 

  20. Piech, C., Bassen, J., Huang, J., Ganguli, S., Sahami, M., Guibas, L.J., Sohl-Dickstein, J.: Deep knowledge tracing. In: Advances in Neural Information Processing Systems, pp. 505–513 (2015)

    Google Scholar 

  21. Pizzato, L., Rej, T., Akehurst, J., Koprinska, I., Yacef, K., Kay, J.: Recommending people to people: the nature of reciprocal recommenders with a case study in online dating. User Model. User-Adap. Inter. 23(5), 447–488 (2013)

    Article  Google Scholar 

  22. Pizzato, L., Rej, T., Chung, T., Yacef, K., Koprinska, I., Kay, J.: Reciprocal recommenders. In: 8th Workshop on Intelligent Techniques for Web Personalization and Recommender Systems, UMAP (2010)

    Google Scholar 

  23. Potts, B., Khosravi, H., Reidsema, C., Bakharia, A., Belonogoff, M., Fleming, M.: Reciprocal peer recommendation for learning purposes. In: Proceedings of the 8th International Conference on Learning Analytics and Knowledge (2018)

    Google Scholar 

  24. Ross, M.T., Cameron, H.S.: Peer assisted learning: a planning and implementation framework: amee guide no. 30. Med. Teach. 29(6), 527–545 (2007)

    Article  Google Scholar 

  25. Sha, L., Hong, P.: Neural knowledge tracing. Brain Function Assessment in Learning. LNCS (LNAI), vol. 10512, pp. 108–117. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67615-9_10

    Chapter  Google Scholar 

  26. Thai-Nghe, N., Drumond, L., Horváth, T., Krohn-Grimberghe, A., Nanopoulos, A., Schmidt-Thieme, L.: Factorization techniques for predicting student performance. In: Educational Recommender Systems and Technologies: Practices and Challenges, pp. 129–153 (2011)

    Google Scholar 

  27. Van Der Heijden, B., Boon, J., Van der Klink, M., Meijs, E.: Employability enhancement through formal and informal learning: an empirical study among dutch non-academic university staff members. Int. J. Training Dev. 13(1), 19–37 (2009)

    Article  Google Scholar 

  28. Vygotsky, L.S.: Mind in Society: The Development of Higher Psychological Processes. Harvard University Press, Cambridge (1980)

    Google Scholar 

  29. Yudelson, M.V., Koedinger, K.R., Gordon, G.J.: Individualized bayesian knowledge tracing models. In: Lane, H.C., Yacef, K., Mostow, J., Pavlik, P. (eds.) AIED 2013. LNCS (LNAI), vol. 7926, pp. 171–180. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39112-5_18

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boyd A. Potts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Potts, B.A., Khosravi, H., Reidsema, C. (2018). Reciprocal Content Recommendation for Peer Learning Study Sessions. In: Penstein Rosé, C., et al. Artificial Intelligence in Education. AIED 2018. Lecture Notes in Computer Science(), vol 10947. Springer, Cham. https://doi.org/10.1007/978-3-319-93843-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93843-1_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93842-4

  • Online ISBN: 978-3-319-93843-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics