[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Decoupling Multivariate Functions Using Second-Order Information and Tensors

  • Conference paper
  • First Online:
Latent Variable Analysis and Signal Separation (LVA/ICA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10891))

Abstract

The power of multivariate functions is their ability to model a wide variety of phenomena, but have the disadvantages that they lack an intuitive or interpretable representation, and often require a (very) large number of parameters. We study decoupled representations of multivariate vector functions, which are linear combinations of univariate functions in linear combinations of the input variables. This model structure provides a description with fewer parameters, and reveals the internal workings in a simpler way, as the nonlinearities are one-to-one functions. In earlier work, a tensor-based method was developed for performing this decomposition by using first-order derivative information. In this article, we generalize this method and study how the use of second-order derivative information can be incorporated. By doing this, we are able to push the method towards more involved configurations, while preserving uniqueness of the underlying tensor decompositions. Furthermore, even for some non-identifiable structures, the method seems to return a valid decoupled representation. These results are a step towards more general data-driven and noise-robust tensor-based framework for computing decoupled function representations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Białynicki-Birula, A., Schinzel, A.: Representations of multivariate polynomials as sums of polynomials in linear forms. Colloq. Math. 112(2), 201–233 (2008)

    Article  MathSciNet  Google Scholar 

  2. Carlini, E., Chipalkatti, J.: On Waring’s problem for several algebraic forms. Comment. Math. Helv. 78, 494–517 (2003)

    Article  MathSciNet  Google Scholar 

  3. Carroll, J., Chang, J.: Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart-Young” decomposition. Psychometrika 35(3), 283–319 (1970)

    Article  Google Scholar 

  4. Comon, P., Golub, G., Lim, L.H., Mourrain, B.: Symmetric tensors and symmetric tensor rank. SIAM J. Matrix Anal. Appl. 30(3), 1254–1279 (2008)

    Article  MathSciNet  Google Scholar 

  5. Comon, P., Qi, Y., Usevich, K.: Identifiability of an X-rank decomposition of polynomial maps. SIAM J. Appl. Algebra and Geom. 1(1), 388–414 (2017)

    MathSciNet  MATH  Google Scholar 

  6. De Lathauwer, L.: A link between the canonical decomposition in multilinear algebra and simultaneous matrix diagonalization. SIAM J. Matrix Anal. Appl. 28(3), 642–666 (2006)

    Article  MathSciNet  Google Scholar 

  7. Domanov, I., De Lathauwer, L.: On the uniqueness of the canonical polyadic decomposition of third-order tensors – part I: basic results and uniqueness of one factor matrix. SIAM J. Matrix Anal. Appl. 34(3), 855–875 (2013)

    Article  MathSciNet  Google Scholar 

  8. Domanov, I., De Lathauwer, L.: On the uniqueness of the canonical polyadic decomposition of third-order tensors – part II: uniqueness of the overall decomposition. SIAM J. Matrix Anal. Appl. 34(3), 876–903 (2013)

    Article  MathSciNet  Google Scholar 

  9. Dreesen, P., Ishteva, M., Schoukens, J.: Decoupling multivariate polynomials using first-order information and tensor decompositions. SIAM J. Matrix Anal. Appl. 36(2), 864–879 (2015)

    Article  MathSciNet  Google Scholar 

  10. Harshman, R.A.: Foundations of the PARAFAC procedure: model and conditions for an “explanatory” multi-mode factor analysis. UCLA Working Pap. Phon. 16(1), 1–84 (1970)

    Google Scholar 

  11. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MathSciNet  Google Scholar 

  12. Kruskal, J.B.: Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Lin. Algebra Appl. 18, 95–138 (1977)

    Article  MathSciNet  Google Scholar 

  13. Oeding, L., Ottaviani, G.: Eigenvectors of tensors and algorithms for Waring decomposition. J. Symb. Comput. 54, 9–35 (2013)

    Article  MathSciNet  Google Scholar 

  14. Schinzel, A.: On a decomposition of polynomials in several variables. Journal de Théorie des Nombres de Bordeaux 14(2), 647–666 (2002)

    Article  MathSciNet  Google Scholar 

  15. Sorber, L., Van Barel, M., De Lathauwer, L.: Structured data fusion. IEEE J. Sel. Top. Sig. Process. 9(4), 586–600 (2015)

    Article  Google Scholar 

  16. Sørensen, M., De Lathauwer, L.: Coupled canonical polyadic decompositions and (coupled) decompositions in multilinear rank-\((L_{r, n}, L_{r, n},1)\) terms–part I: uniqueness. SIAM. J. Matrix Anal. Appl. 36(2), 496–522 (2015)

    Article  MathSciNet  Google Scholar 

  17. Sørensen, M., De Lathauwer, L.: Coupled canonical polyadic decompositions and (coupled) decompositions in multilinear rank-\((L_{r, n}, L_{r, n},1)\) terms–part II: algorithms. SIAM. J. Matrix Anal. Appl. 36(3), 1015–1045 (2015)

    Article  MathSciNet  Google Scholar 

  18. Tiels, K., Schoukens, J.: From coupled to decoupled polynomial representations in parallel Wiener-Hammerstein models. In: Proceedings of the 52nd IEEE Conference on Decision and Control (CDC), Florence, Italy, pp. 4937–4942 (2013)

    Google Scholar 

  19. Usevich, K.: Decomposing multivariate polynomials with structured low-rank matrix completion. In: Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems (MTNS 2014), Groningen, The Netherlands, pp. 1826–1833 (2014)

    Google Scholar 

  20. Usevich, K., Dreesen, P., Ishteva, M.: Decoupling multivariate polynomials: interconnections between tensorizations (2017). Preprint arXiv:1703.02493

  21. Van Mulders, A., Vanbeylen, L., Usevich, K.: Identification of a block-structured model with several sources of nonlinearity. In: Proceedings of the 13th European Control Conference (2014)

    Google Scholar 

  22. Vervliet, N., Debals, O., Sorber, L., Van Barel, M., De Lathauwer, L.: Tensorlab 3.0 (2016). http://www.tensorlab.net/

Download references

Acknowledgments

This work was supported in part by the Flemish Government (Methusalem), and by the Fonds Wetenschappelijk Onderzoek – Vlaanderen under EOS Project no 30468160 and research projects G.0280.15N and G.0901.17N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Dreesen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dreesen, P., De Geeter, J., Ishteva, M. (2018). Decoupling Multivariate Functions Using Second-Order Information and Tensors. In: Deville, Y., Gannot, S., Mason, R., Plumbley, M., Ward, D. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2018. Lecture Notes in Computer Science(), vol 10891. Springer, Cham. https://doi.org/10.1007/978-3-319-93764-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93764-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93763-2

  • Online ISBN: 978-3-319-93764-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics