[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Source Analysis and Selection Using Block Term Decomposition in Atrial Fibrillation

  • Conference paper
  • First Online:
Latent Variable Analysis and Signal Separation (LVA/ICA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10891))

Abstract

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia in clinical practice, and is becoming a major public health concern. To better understand the mechanisms of this arrhythmia an accurate analysis of the atrial activity (AA) signal in electrocardiogram (ECG) recordings is necessary. The block term decomposition (BTD), a tensor factorization technique, has been recently proposed as a tool to extract the AA in ECG signals using a blind source separation (BSS) approach. This paper makes a deep analysis of the sources estimated by BTD, showing that the classical method to select the atrial source among the other sources may not work in some cases, even for the matrix-based methods. In this context, we propose two new automated methods to select the atrial source by considering another novel parameter. Experimental results on ten patients show the validity of the proposed methods.

P. M. R. de Oliveira—Funded by a Ph.D. scholarship from the IT Doctoral School of the Université Côte d’Azur.

V. Zarzoso—Member of the Institut Universitaire de France.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. January, C.T., Wann, L.S., Alpert, J.S., Calkins, H., Cleveland, J.C., Cigarroa, J.E., Conti, J.B., et al.: 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the Heart Rhythm Society. Circulation 64(21), 2246–2280 (2014)

    Google Scholar 

  2. Mainardi, L., Sörnmo, L., Cerutti, S.: Understanding atrial fibrilation: the signal processing contribution. Synthesis Lectures on Biomedical Engineering. Morgan & Claypool Publishers (2008)

    Google Scholar 

  3. Rieta, J.J., Castells, F., Sánchez, C., Zarzoso, V., Millet, J.: Atrial activity extraction for atrial fibrillation analysis using blind source separation. IEEE Trans. Biomed. Eng. 51(7), 1176–1186 (2004)

    Article  Google Scholar 

  4. Castells, F., Rieta, J.J., Millet, J., Zarzoso, V.: Spatiotemporal blind source separation approach to atrial activity estimation in atrial tachyarrhythmias. IEEE Trans. Biomed. Eng. 52(2), 258–267 (2005)

    Article  Google Scholar 

  5. Zarzoso, V.: Extraction of ECG characteristics using source separation techniques: exploiting statistical independence and beyond. In: Naït-Ali, A. (ed.) Advanced Biosignal Processing, pp. 15–47. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-89506-0_2

    Chapter  Google Scholar 

  6. Ribeiro, L.N., Hidalgo-Muñoz, A.R., Zarzoso, V.: Atrial signal extraction in atrial fibrillation electrocardiograms using a tensor decomposition approach. In: Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015, Milan, Italy, 25–29 August 2015, pp. 6987–6990 (2015)

    Google Scholar 

  7. Ribeiro, L.N., Hidalgo-Muñoz, A.R., Favier, G., Mota, J.C.M., de Almeida, A.L.F., Zarzoso, V.: A tensor decomposition approach to noninvasive atrial activity extraction in atrial fibrillation ECG. In: Proceedings of the XXIII European Signal Processing Conference, EUSIPCO-2015, Nice, France, 31 August–4 September 2015, pp. 2576–2580 (2015)

    Google Scholar 

  8. Ribeiro, L.N., de Almeida, A.L.F., Zarzoso, V.: Enhanced block term decomposition for atrial activity extraction in atrial fibrillation ECG. In: Proceedings of the 9th IEEE Sensor Array and Multichannel Signal Processing Workshop, SAM-2016, Rio de Janeiro, Brazil, 10–13 July 2016

    Google Scholar 

  9. Zarzoso, V.: Parameter estimation in block term decomposition for noninvasive atrial fibrillation analysis. In: Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, CAMSAP-2017, Curaçao, Dutch Antilles, 10–13 December 2017

    Google Scholar 

  10. Zarzoso, V., Comon, P.: Robust independent component analysis by iterative maximization of the kurtosis contrast with algebraic optimal step size. IEEE Trans. Neural Netw. 21(2), 248–261 (2010)

    Article  Google Scholar 

  11. Jolliffe, I.: Principal Component Analysis. Wiley Online Library (2005)

    Google Scholar 

  12. De Lathauwer, L.: Blind separation of exponential polynomials and the decomposition of a tensor in rank-(\(l_r\), \(l_r\), \(1\)) terms. SIAM J. Matrix Anal. Appl. 32(4), 1451–1474 (2011)

    Article  MathSciNet  Google Scholar 

  13. Boley, D.L., Luk, F.T., Vandevoorde, D.: Vandermonde factorization of a Hankel matrix. In: Proceedings of the Workshop on Scientific Computing, Hong Kong, March 1997

    Google Scholar 

  14. Vervliet, N., Debals, O., Sorber, L., Van Barel, M., De Lathauwer, L.: Tensorlab 3.0, March 2016. https://www.tensorlab.net/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Marinho R. de Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Oliveira, P.M.R., Zarzoso, V. (2018). Source Analysis and Selection Using Block Term Decomposition in Atrial Fibrillation. In: Deville, Y., Gannot, S., Mason, R., Plumbley, M., Ward, D. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2018. Lecture Notes in Computer Science(), vol 10891. Springer, Cham. https://doi.org/10.1007/978-3-319-93764-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93764-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93763-2

  • Online ISBN: 978-3-319-93764-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics