[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Enabling Semantics in Enterprises

  • Conference paper
  • First Online:
Enterprise Information Systems (ICEIS 2017)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 321))

Included in the following conference series:

Abstract

Nowadays, enterprises generate massive amounts of heterogeneous structured and unstructured data within their factories and attempt to store them inside data lakes. However, potential users, such as data scientists, encounter problems when they have to find, analyze and especially understand the data. Possible existing solutions use ontologies as data governance technique for establishing a common understanding of data sources. While ontologies build a solid basis for representing knowledge, their construction is a very complex task which requires the knowledge of multiple domain experts. However, in fast and continuously evolving enterprises a static ontology will be quickly outdated.

To cope with this problem, we developed the information processing platform ESKAPE. With the help of ESKAPE, data publishers annotate their added data sources with semantic models providing additional knowledge which enables later users to process, query and subscribe to heterogeneous data as information products. Instead of solely creating semantic models based on a pre-defined ontology, ESKAPE maintains a knowledge graph which learns from the knowledge provided within the semantic models by data publishers. Based on the semantic models and the evolving knowledge graph, ESKAPE supports enterprises’ data scientists in finding, analyzing and understanding data.

To evaluate ESKAPE’s usability, we conducted an open competitive hackathon where users had to develop mobile applications. The received feedback shows that ESKAPE already reduced the workload of the participants for getting the appropriate required data and enhanced the usability of dealing with the available data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.ogcnetwork.net/SensorML.

  2. 2.

    Advanced Message Queuing Protocol: An open standard application layer protocol.

  3. 3.

    Message Queue Telemetry Transport: A lightweight publish-subscribe messaging protocol.

  4. 4.

    https://www.ietf.org/rfc/rfc4180.txt.

  5. 5.

    https://www.w3.org/TR/tabular-metadata/.

  6. 6.

    https://neo4j.com/.

  7. 7.

    http://hadoop.apache.org/.

  8. 8.

    http://storm.apache.org/.

  9. 9.

    https://www.rabbitmq.com/.

  10. 10.

    http://drill.apache.org/.

References

  1. Internet of Things Global Standards Initiative: Overview of the Internet of Things (2012). http://www.itu.int/ITU-T/recommendations/rec.aspx?rec=y.2060

  2. Pomp, A., Paulus, A., Jeschke, S., Meisen, T.: Eskape: Information platform for enabling semantic data processing. In: Proceedings of the 19th International Conference on Enterprise Information Systems. ICEIS, INSTICC, vol. 2, pp. 644–655. ScitePress (2017)

    Google Scholar 

  3. Ahamed, B., Ramkumar, T.: Data integration-challenges, techniques and future directions: a comprehensive study. Indian J. Sci. Technol. 9, 1–9 (2016)

    Google Scholar 

  4. Garcia-Molina, H., Hammer, J., Ireland, K., Papakonstantinou, Y., Ullman, J., Widom, J.: Integrating and accessing heterogeneous information sources in TSIMMIS. In: Proceedings of the AAAI Symposium on Information Gathering, vol. 3, pp. 61–64 (1995)

    Google Scholar 

  5. Taheriyan, M., Knoblock, C.A., Szekely, P., Ambite, J.L.: A scalable approach to learn semantic models of structured sources. In: Proceedings of the 8th IEEE International Conference on Semantic Computing (ICSC 2014) (2014)

    Google Scholar 

  6. Knoblock, C.A., Szekely, P.: Exploiting semantics for big data integration. AI Mag. 36, 25–38 (2015)

    Article  Google Scholar 

  7. Taheriyan, M., Knoblock, C.A., Szekely, P., Ambite, J.L.: Learning the semantics of structured data sources. Web Semant. Sci. Serv. Agents World Wide Web 37, 152–169 (2016)

    Article  Google Scholar 

  8. Gupta, S., Szekely, P., Knoblock, C.A., Goel, A., Taheriyan, M., Muslea, M.: Karma: a system for mapping structured sources into the semantic web. In: Simperl, E., Norton, B., Mladenic, D., Della Valle, E., Fundulaki, I., Passant, A., Troncy, R. (eds.) ESWC 2012. LNCS, vol. 7540, pp. 430–434. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46641-4_40

    Chapter  Google Scholar 

  9. Meisen, T., Meisen, P., Schilberg, D., Jeschke, S.: Adaptive information integration: bridging the semantic gap between numerical simulations. In: Zhang, R., Zhang, J., Zhang, Z., Filipe, J., Cordeiro, J. (eds.) ICEIS 2011. LNBIP, vol. 102, pp. 51–65. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29958-2_4

    Chapter  Google Scholar 

  10. Hepp, M., Bachlechner, D., Siorpaes, K.: Ontowiki: community-driven ontology engineering and ontology usage based on wikis. In: Proceedings of the 2006 International Symposium on Wikis, WikiSym 2006, pp. 143–144. ACM, New York (2006)

    Google Scholar 

  11. Xiao, L., Ruan, C., Yang, Zhang, J., Hu, J.: Domain ontology learning enhanced by optimized relation instance in DBpedia. In: Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016), Paris, France, ELRA (2016)

    Google Scholar 

  12. He, S., Zou, X., Xiao, L., Hu, J.: Construction of diachronic ontologies from people’s daily of fifty years. In: Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC 2014), Reykjavik, Iceland, ELRA (2014)

    Google Scholar 

  13. Cochez, M., Decker, S., Prud’hommeaux, E.: Knowledge representation on the web revisited: the case for prototypes. In: Groth, P., Simperl, E., Gray, A., Sabou, M., Krötzsch, M., Lecue, F., Flöck, F., Gil, Y. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 151–166. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46523-4_10

    Chapter  Google Scholar 

  14. Palavalli, A., Karri, D., Pasupuleti, S.: Semantic internet of things. In: 2016 IEEE Tenth International Conference on Semantic Computing (ICSC), pp. 91–95 (2016)

    Google Scholar 

  15. Dorsch, L.: How to bridge the interoperability gap in a smart city (2016). http://blog.bosch-si.com/categories/projects/2016/12/bridge-interoperability-gap-smart-city-big-iot/

  16. Cambridge Semantics: Anzo Smart Data Discovery (2016). http://www.cambridgesemantics.com/

  17. ALTILIA Group: Mantra Platform (2015). http://www.altiliagroup.com/platform/mantra-platform/

  18. Kinor: kSpheres (2015). http://www.kinor.com/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Pomp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pomp, A., Paulus, A., Jeschke, S., Meisen, T. (2018). Enabling Semantics in Enterprises. In: Hammoudi, S., Śmiałek, M., Camp, O., Filipe, J. (eds) Enterprise Information Systems. ICEIS 2017. Lecture Notes in Business Information Processing, vol 321. Springer, Cham. https://doi.org/10.1007/978-3-319-93375-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93375-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93374-0

  • Online ISBN: 978-3-319-93375-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics