Abstract
Nowadays, enterprises generate massive amounts of heterogeneous structured and unstructured data within their factories and attempt to store them inside data lakes. However, potential users, such as data scientists, encounter problems when they have to find, analyze and especially understand the data. Possible existing solutions use ontologies as data governance technique for establishing a common understanding of data sources. While ontologies build a solid basis for representing knowledge, their construction is a very complex task which requires the knowledge of multiple domain experts. However, in fast and continuously evolving enterprises a static ontology will be quickly outdated.
To cope with this problem, we developed the information processing platform ESKAPE. With the help of ESKAPE, data publishers annotate their added data sources with semantic models providing additional knowledge which enables later users to process, query and subscribe to heterogeneous data as information products. Instead of solely creating semantic models based on a pre-defined ontology, ESKAPE maintains a knowledge graph which learns from the knowledge provided within the semantic models by data publishers. Based on the semantic models and the evolving knowledge graph, ESKAPE supports enterprises’ data scientists in finding, analyzing and understanding data.
To evaluate ESKAPE’s usability, we conducted an open competitive hackathon where users had to develop mobile applications. The received feedback shows that ESKAPE already reduced the workload of the participants for getting the appropriate required data and enhanced the usability of dealing with the available data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
Advanced Message Queuing Protocol: An open standard application layer protocol.
- 3.
Message Queue Telemetry Transport: A lightweight publish-subscribe messaging protocol.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
References
Internet of Things Global Standards Initiative: Overview of the Internet of Things (2012). http://www.itu.int/ITU-T/recommendations/rec.aspx?rec=y.2060
Pomp, A., Paulus, A., Jeschke, S., Meisen, T.: Eskape: Information platform for enabling semantic data processing. In: Proceedings of the 19th International Conference on Enterprise Information Systems. ICEIS, INSTICC, vol. 2, pp. 644–655. ScitePress (2017)
Ahamed, B., Ramkumar, T.: Data integration-challenges, techniques and future directions: a comprehensive study. Indian J. Sci. Technol. 9, 1–9 (2016)
Garcia-Molina, H., Hammer, J., Ireland, K., Papakonstantinou, Y., Ullman, J., Widom, J.: Integrating and accessing heterogeneous information sources in TSIMMIS. In: Proceedings of the AAAI Symposium on Information Gathering, vol. 3, pp. 61–64 (1995)
Taheriyan, M., Knoblock, C.A., Szekely, P., Ambite, J.L.: A scalable approach to learn semantic models of structured sources. In: Proceedings of the 8th IEEE International Conference on Semantic Computing (ICSC 2014) (2014)
Knoblock, C.A., Szekely, P.: Exploiting semantics for big data integration. AI Mag. 36, 25–38 (2015)
Taheriyan, M., Knoblock, C.A., Szekely, P., Ambite, J.L.: Learning the semantics of structured data sources. Web Semant. Sci. Serv. Agents World Wide Web 37, 152–169 (2016)
Gupta, S., Szekely, P., Knoblock, C.A., Goel, A., Taheriyan, M., Muslea, M.: Karma: a system for mapping structured sources into the semantic web. In: Simperl, E., Norton, B., Mladenic, D., Della Valle, E., Fundulaki, I., Passant, A., Troncy, R. (eds.) ESWC 2012. LNCS, vol. 7540, pp. 430–434. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46641-4_40
Meisen, T., Meisen, P., Schilberg, D., Jeschke, S.: Adaptive information integration: bridging the semantic gap between numerical simulations. In: Zhang, R., Zhang, J., Zhang, Z., Filipe, J., Cordeiro, J. (eds.) ICEIS 2011. LNBIP, vol. 102, pp. 51–65. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29958-2_4
Hepp, M., Bachlechner, D., Siorpaes, K.: Ontowiki: community-driven ontology engineering and ontology usage based on wikis. In: Proceedings of the 2006 International Symposium on Wikis, WikiSym 2006, pp. 143–144. ACM, New York (2006)
Xiao, L., Ruan, C., Yang, Zhang, J., Hu, J.: Domain ontology learning enhanced by optimized relation instance in DBpedia. In: Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016), Paris, France, ELRA (2016)
He, S., Zou, X., Xiao, L., Hu, J.: Construction of diachronic ontologies from people’s daily of fifty years. In: Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC 2014), Reykjavik, Iceland, ELRA (2014)
Cochez, M., Decker, S., Prud’hommeaux, E.: Knowledge representation on the web revisited: the case for prototypes. In: Groth, P., Simperl, E., Gray, A., Sabou, M., Krötzsch, M., Lecue, F., Flöck, F., Gil, Y. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 151–166. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46523-4_10
Palavalli, A., Karri, D., Pasupuleti, S.: Semantic internet of things. In: 2016 IEEE Tenth International Conference on Semantic Computing (ICSC), pp. 91–95 (2016)
Dorsch, L.: How to bridge the interoperability gap in a smart city (2016). http://blog.bosch-si.com/categories/projects/2016/12/bridge-interoperability-gap-smart-city-big-iot/
Cambridge Semantics: Anzo Smart Data Discovery (2016). http://www.cambridgesemantics.com/
ALTILIA Group: Mantra Platform (2015). http://www.altiliagroup.com/platform/mantra-platform/
Kinor: kSpheres (2015). http://www.kinor.com/
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Pomp, A., Paulus, A., Jeschke, S., Meisen, T. (2018). Enabling Semantics in Enterprises. In: Hammoudi, S., Śmiałek, M., Camp, O., Filipe, J. (eds) Enterprise Information Systems. ICEIS 2017. Lecture Notes in Business Information Processing, vol 321. Springer, Cham. https://doi.org/10.1007/978-3-319-93375-7_20
Download citation
DOI: https://doi.org/10.1007/978-3-319-93375-7_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-93374-0
Online ISBN: 978-3-319-93375-7
eBook Packages: Computer ScienceComputer Science (R0)