[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

An Efficient Ranking-Centered Density-Based Document Clustering Method

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10939))

Included in the following conference series:

  • 3580 Accesses

Abstract

Document clustering is a popular method for discovering useful information from text data. This paper proposes an innovative hybrid document clustering method based on the novel concepts of ranking, density and shared neighborhood. We utilize ranked documents generated from a search engine to effectively build a graph of shared relevant documents. The high density regions in the graph are processed to form initial clusters. The clustering decisions are further refined using the shared neighborhood information. Empirical analysis shows that the proposed method is able to produce accurate and efficient solution as compared to relevant benchmarking methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 67.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 84.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anastasiu, D.C., Tagarelli, A., Karypis, G.: Document clustering: the next frontier. In: Aggarwal, C.C., Reddy, C.K. (eds.) Data Clustering: Algorithms and Applications, pp. 305–328 (2013)

    Google Scholar 

  2. Zhao, W., He, Q., Ma, H., Shi, Z.: Effective semi-supervised document clustering via active learning with instance-level constraints. KAIS 30, 569–587 (2012)

    Google Scholar 

  3. Tomašev, N., Radovanović, M., Mladenić, D., Ivanović, M.: Hubness-based clustering of high-dimensional data. In: Celebi, M.Emre (ed.) Partitional Clustering Algorithms, pp. 353–386. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-09259-1_11

    Chapter  Google Scholar 

  4. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, pp. 226–231 (1996)

    Google Scholar 

  5. Ertöz, L., Steinbach, M., Kumar, V.: Finding topics in collections of documents: a shared nearest neighbor approach. Clustering and Information Retrieval. Network Theory and Applications, vol. 11, pp. 83–103. Springer, Boston (2003). https://doi.org/10.1007/978-1-4613-0227-8_3

    Chapter  Google Scholar 

  6. Jarvis, R.A., Patrick, E.A.: Clustering using a similarity measure based on shared near neighbors. IEEE Trans. Comput. 100, 1025–1034 (1973)

    Article  Google Scholar 

  7. Ertöz, L., Steinbach, M., Kumar, V.: Finding clusters of different sizes, shapes, and densities in noisy, high dimensional data. In: SIAM, pp. 47–58. SIAM (2003)

    Chapter  Google Scholar 

  8. Sutanto, T., Nayak, R.: Semi-supervised document clustering via loci. In: Wang, J., Cellary, W., Wang, D., Wang, H., Chen, S.-C., Li, T. (eds.) WISE 2015. LNCS, vol. 9419, pp. 208–215. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26187-4_16

    Chapter  Google Scholar 

  9. Broder, A., Garcia-Pueyo, L., Josifovski, V., Vassilvitskii, S., Venkatesan, S.: Scalable k-means by ranked retrieval. In: 7th WSDM, pp. 233–242. ACM (2014)

    Google Scholar 

  10. Fuhr, N., Lechtenfeld, M., Stein, B., Gollub, T.: The optimum clustering framework: implementing the cluster hypothesis. Inf. Retr. 15, 93–115 (2012)

    Article  Google Scholar 

  11. Zhang, J., Long, X., Suel, T.: Performance of compressed inverted list caching in search engines. In: 17th WWW, pp. 387–396. ACM (2008)

    Google Scholar 

  12. Jardine, N., van Rijsbergen, C.J.: The use of hierarchic clustering in information retrieval. Inf. Storage Retr. 7, 217–240 (1971)

    Article  Google Scholar 

  13. Zhang, B., Li, H., Liu, Y., Ji, L., Xi, W., Fan, W., Chen, Z., Ma, W.-Y.: Improving web search results using affinity graph. In: 28th ACM SIGIR, pp. 504–511. ACM (2005)

    Google Scholar 

  14. Hou, J., Nayak, R.: The heterogeneous cluster ensemble method using hubness for clustering text documents. In: Lin, X., Manolopoulos, Y., Srivastava, D. (eds.) WISE 2013. LNCS, vol. 8180, pp. 102–110. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41230-1_9

    Chapter  Google Scholar 

  15. Lin, C.J.: Projected gradient methods for nonnegative matrix factorization. Neural Comput. 19, 2756–2779 (2007)

    Article  MathSciNet  Google Scholar 

  16. Hajek, B.: Adaptive transmission strategies and routing in mobile radio networks. Urbana 51, 61801 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wathsala Anupama Mohotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mohotti, W.A., Nayak, R. (2018). An Efficient Ranking-Centered Density-Based Document Clustering Method. In: Phung, D., Tseng, V., Webb, G., Ho, B., Ganji, M., Rashidi, L. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2018. Lecture Notes in Computer Science(), vol 10939. Springer, Cham. https://doi.org/10.1007/978-3-319-93040-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93040-4_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93039-8

  • Online ISBN: 978-3-319-93040-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics