[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Text Generation Based on Generative Adversarial Nets with Latent Variables

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10938))

Included in the following conference series:

  • 2596 Accesses

Abstract

In this paper, we propose a model using generative adversarial net (GAN) to generate realistic text. Instead of using standard GAN, we combine variational autoencoder (VAE) with generative adversarial net. The use of high-level latent random variables is helpful to learn the data distribution and solve the problem that generative adversarial net always emits the similar data. We propose the VGAN model where the generative model is composed of recurrent neural network and VAE. The discriminative model is a convolutional neural network. We train the model via policy gradient. We apply the proposed model to the task of text generation and compare it to other recent neural network based models, such as recurrent neural network language model and SeqGAN. We evaluate the performance of the model by calculating negative log-likelihood and the BLEU score. We conduct experiments on three benchmark datasets, and results show that our model outperforms other previous models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bengio, S., Vinyals, O., Jaitly, N., Shazeer, N.: Scheduled sampling for sequence prediction with recurrent neural networks. In: NIPS, pp. 1171–1179 (2015)

    Google Scholar 

  2. Che, T., Li, Y., Zhang, R., Hjelm, R.D., Li, W., Song, Y., Bengio, Y.: Maximum-likelihood augmented discrete generative adversarial networks. arXiv:1702.07983 (2017)

  3. Chung, J., Kastner, K., Dinh, L., Goel, K., Courville, A.C., Bengio, Y.: A recurrent latent variable model for sequential data. In: NIPS, pp. 2980–2988 (2015)

    Google Scholar 

  4. Denton, E.L., Chintala, S., Szlam, A., Fergus, R.D.: Deep generative image models using a Laplacian pyramid of adversarial networks. In: NIPS, pp. 1486–1494 (2015)

    Google Scholar 

  5. Gatys, L.A., Ecker, A.S., Bethge, M.: A neural algorithm of artistic style. arXiv: 1508.06576 (2015)

  6. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  7. Huszar, F.: How (not) to train your generative model: scheduled sampling, likelihood, adversary? arXiv:1511.05101 (2015)

  8. Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A convolutional neural network for modelling sentences. In: ACL, pp. 655–665 (2014)

    Google Scholar 

  9. Kim, Y.: Convolutional neural networks for sentence classification. In: EMNLP, pp. 1746–1751 (2014)

    Google Scholar 

  10. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv: 1312.6144 (2014)

  11. Kusner, M.J., Hernndezlobato, J.M.: GANS for sequences of discrete elements with the Gumbel-softmax distribution (2016)

    Google Scholar 

  12. Lai, S., Xu, L., Liu, K., Zhao, J.: Recurrent convolutional neural networks for text classification. In: AAAI, pp. 2267–2273 (2015)

    Google Scholar 

  13. Lamb, A., Goyal, A., Zhang, Y., Zhang, S., Courville, A.C., Bengio, Y.: Professor forcing: a new algorithm for training recurrent networks. In: Neural Information Processing Systems, pp. 4601–4609 (2016)

    Google Scholar 

  14. Li, J., Monroe, W., Shi, T., Jean, S., Ritter, A., Jurafsky, D.: Adversarial learning for neural dialogue generation. arXiv:1701.06547 (2017)

  15. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., Wierstra, D.P.: Continuous control with deep reinforcement learning. arXiv:1509.02971 (2016)

  16. Liu, P., Qiu, X., Huang, X.: Recurrent neural network for text classification with multi-task learning. In: IJCAI, pp. 2873–2879 (2016)

    Google Scholar 

  17. Marcus, M.P., Marcinkiewicz, M.A., Santorini, B.: Building a large annotated corpus of English: the Penn Treebank. Comput. Linguist. 19(2), 313–330 (1993)

    Google Scholar 

  18. Mikolov, T., Karafiat, M., Burget, L., Cernock, J., Khudanpur, S.: Recurrent neural network based language model. In: Interspeech, pp. 1045–1048 (2010)

    Google Scholar 

  19. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv: 1511.06434 (2016)

  20. Ranzato, M., Chopra, S., Auli, M., Zaremba, W.: Sequence level training with recurrent neural networks. arXiv: 1511.06732 (2016)

  21. Salimans, T., Goodfellow, I.J., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: NIPS, pp. 2234–2242 (2016)

    Google Scholar 

  22. Serban, I.V., Sordoni, A., Lowe, R., Charlin, L., Pineau, J., Courville, A.C., Bengio, Y.: A hierarchical latent variable encoder-decoder model for generating dialogues, vol. 1, arXiv: 1605.06069 (2016)

  23. Sutton, R.S., Mcallester, D.A., Singh, S.P., Mansour, Y.: Policy gradient methods for reinforcement learning with function approximation. In: NIPS, pp. 1057–1063 (2000)

    Google Scholar 

  24. Yu, L., Zhang, W., Wang, J., Yu, Y.: Seqgan: sequence generative adversarial nets with policy gradient. arXiv:1609.05473 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zengchang Qin or Tao Wan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, H., Qin, Z., Wan, T. (2018). Text Generation Based on Generative Adversarial Nets with Latent Variables. In: Phung, D., Tseng, V., Webb, G., Ho, B., Ganji, M., Rashidi, L. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2018. Lecture Notes in Computer Science(), vol 10938. Springer, Cham. https://doi.org/10.1007/978-3-319-93037-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93037-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93036-7

  • Online ISBN: 978-3-319-93037-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics