Abstract
In this paper, we propose a model using generative adversarial net (GAN) to generate realistic text. Instead of using standard GAN, we combine variational autoencoder (VAE) with generative adversarial net. The use of high-level latent random variables is helpful to learn the data distribution and solve the problem that generative adversarial net always emits the similar data. We propose the VGAN model where the generative model is composed of recurrent neural network and VAE. The discriminative model is a convolutional neural network. We train the model via policy gradient. We apply the proposed model to the task of text generation and compare it to other recent neural network based models, such as recurrent neural network language model and SeqGAN. We evaluate the performance of the model by calculating negative log-likelihood and the BLEU score. We conduct experiments on three benchmark datasets, and results show that our model outperforms other previous models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bengio, S., Vinyals, O., Jaitly, N., Shazeer, N.: Scheduled sampling for sequence prediction with recurrent neural networks. In: NIPS, pp. 1171–1179 (2015)
Che, T., Li, Y., Zhang, R., Hjelm, R.D., Li, W., Song, Y., Bengio, Y.: Maximum-likelihood augmented discrete generative adversarial networks. arXiv:1702.07983 (2017)
Chung, J., Kastner, K., Dinh, L., Goel, K., Courville, A.C., Bengio, Y.: A recurrent latent variable model for sequential data. In: NIPS, pp. 2980–2988 (2015)
Denton, E.L., Chintala, S., Szlam, A., Fergus, R.D.: Deep generative image models using a Laplacian pyramid of adversarial networks. In: NIPS, pp. 1486–1494 (2015)
Gatys, L.A., Ecker, A.S., Bethge, M.: A neural algorithm of artistic style. arXiv: 1508.06576 (2015)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Huszar, F.: How (not) to train your generative model: scheduled sampling, likelihood, adversary? arXiv:1511.05101 (2015)
Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A convolutional neural network for modelling sentences. In: ACL, pp. 655–665 (2014)
Kim, Y.: Convolutional neural networks for sentence classification. In: EMNLP, pp. 1746–1751 (2014)
Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv: 1312.6144 (2014)
Kusner, M.J., Hernndezlobato, J.M.: GANS for sequences of discrete elements with the Gumbel-softmax distribution (2016)
Lai, S., Xu, L., Liu, K., Zhao, J.: Recurrent convolutional neural networks for text classification. In: AAAI, pp. 2267–2273 (2015)
Lamb, A., Goyal, A., Zhang, Y., Zhang, S., Courville, A.C., Bengio, Y.: Professor forcing: a new algorithm for training recurrent networks. In: Neural Information Processing Systems, pp. 4601–4609 (2016)
Li, J., Monroe, W., Shi, T., Jean, S., Ritter, A., Jurafsky, D.: Adversarial learning for neural dialogue generation. arXiv:1701.06547 (2017)
Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., Wierstra, D.P.: Continuous control with deep reinforcement learning. arXiv:1509.02971 (2016)
Liu, P., Qiu, X., Huang, X.: Recurrent neural network for text classification with multi-task learning. In: IJCAI, pp. 2873–2879 (2016)
Marcus, M.P., Marcinkiewicz, M.A., Santorini, B.: Building a large annotated corpus of English: the Penn Treebank. Comput. Linguist. 19(2), 313–330 (1993)
Mikolov, T., Karafiat, M., Burget, L., Cernock, J., Khudanpur, S.: Recurrent neural network based language model. In: Interspeech, pp. 1045–1048 (2010)
Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv: 1511.06434 (2016)
Ranzato, M., Chopra, S., Auli, M., Zaremba, W.: Sequence level training with recurrent neural networks. arXiv: 1511.06732 (2016)
Salimans, T., Goodfellow, I.J., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: NIPS, pp. 2234–2242 (2016)
Serban, I.V., Sordoni, A., Lowe, R., Charlin, L., Pineau, J., Courville, A.C., Bengio, Y.: A hierarchical latent variable encoder-decoder model for generating dialogues, vol. 1, arXiv: 1605.06069 (2016)
Sutton, R.S., Mcallester, D.A., Singh, S.P., Mansour, Y.: Policy gradient methods for reinforcement learning with function approximation. In: NIPS, pp. 1057–1063 (2000)
Yu, L., Zhang, W., Wang, J., Yu, Y.: Seqgan: sequence generative adversarial nets with policy gradient. arXiv:1609.05473 (2016)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Wang, H., Qin, Z., Wan, T. (2018). Text Generation Based on Generative Adversarial Nets with Latent Variables. In: Phung, D., Tseng, V., Webb, G., Ho, B., Ganji, M., Rashidi, L. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2018. Lecture Notes in Computer Science(), vol 10938. Springer, Cham. https://doi.org/10.1007/978-3-319-93037-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-93037-4_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-93036-7
Online ISBN: 978-3-319-93037-4
eBook Packages: Computer ScienceComputer Science (R0)