Abstract
Breast cancer is the most common cancer type in women worldwide. Histological evaluation of the breast biopsies is a challenging task even for experienced pathologists. In this paper, we propose a fully automatic method to classify breast cancer histological images to four classes, namely normal, benign, in situ carcinoma and invasive carcinoma. The proposed method takes normalized hematoxylin and eosin stained images as input and gives the final prediction by fusing the output of two residual neural networks (ResNet) of different depth. These ResNets were first pre-trained on ImageNet images, and then fine-tuned on breast histological images. We found that our approach outperformed a previous published method by a large margin when applied on the BioImaging 2015 challenge dataset yielding an accuracy of 97.22%. Moreover, the same approach provided an excellent classification performance with an accuracy of 88.50% when applied on the ICIAR 2018 grand challenge dataset using 5-fold cross validation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Torre, L.A., Bray, F., Siegel, R.L., Ferlay, J., Lortet Tieulent, J., Jemal, A.: Global cancer statistics, 2012. CA Cancer J. Clin. 65(2), 87–108 (2015)
Saadatmand, S., Bretveld, R., Siesling, S., Tilanus-Linthorst, M.M.A.: Influence of tumour stage at breast cancer detection on survival in modern times: population based study in 173 797 patients. BMJ 351, h4901 (2015)
Myers, E.R., Moorman, P., Gierisch, J.M., Havrilesky, L.J., Grimm, L.J., Ghate, S., Davidson, B., Mongtomery, R.C., Crowley, M.J., McCrory, D.C.: Benefits and harms of breast cancer screening: a systematic review. JAMA 314(15), 1615–1634 (2015)
Guray, M., Sahin, A.A.: Benign breast diseases: classification, diagnosis, and management. Oncol. 11(5), 435–449 (2006)
Malhotra, G.K., Zhao, X., Band, H., Band, V.: Histological, molecular and functional subtypes of breast cancers. Cancer Biol. Ther. 10(10), 955–960 (2010)
Makki, J.: Diversity of breast carcinoma: histological subtypes and clinical relevance. Clin. Med. Insights Pathol. 8, 23 (2015)
Elmore, J.G., Longton, G.M., Carney, P.A., Geller, B.M., Onega, T., Tosteson, A.N.A., Nelson, H.D., Pepe, M.S., Allison, K.H., Schnitt, S.J.: Diagnostic concordance among pathologists interpreting breast biopsy specimens. JAMA 313(11), 1122–1132 (2015)
Robertson, S., Azizpour, H., Smith, K., Hartman, J.: Digital image analysis in breast pathology-from image processing techniques to artificial intelligence. Translational Research 194, 19–35 (2018)
Kowal, M., Filipczuk, P., Obuchowicz, A., Korbicz, J., Monczak, R.: Computer-aided diagnosis of breast cancer based on fine needle biopsy microscopic images. Comput. Biol. Med. 43(10), 1563–1572 (2013)
Filipczuk, P., Fevens, T., Krzyzak, A., Monczak, R.: Computer-aided breast cancer diagnosis based on the analysis of cytological images of fine needle biopsies. IEEE Trans. Med. Imaging 32(12), 2169–2178 (2013)
Brook, A., El-Yaniv, R., Isler, E., Kimmel, R., Meir, R., Peleg, D.: Breast cancer diagnosis from biopsy images using generic features and SVMs. Technical report, Technion - Israel Institute of Technology (2006)
Belsare, A.D., Mushrif, M.M., Pangarkar, M.A., Meshram, N.: Classification of breast cancer histopathology images using texture feature analysis. In: TENCON 2015–2015 IEEE Region 10 Conference, pp. 1–5. IEEE (2015)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Araújo, T., Aresta, G., Castro, E., Rouco, J., Aguiar, P., Eloy, C., Polónia, A., Campilho, A.: Classification of breast cancer histology images using convolutional neural networks. PloS One 12(6), e0177544 (2017)
Spanhol, F.A., Oliveira, L.S., Petitjean, C., Heutte, L.: Breast cancer histopathological image classification using convolutional neural networks. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 2560–2567. IEEE (2016)
Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Mitosis detection in breast cancer histology images with deep neural networks. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 411–418. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_51
Cruz-Roa, A., Basavanhally, A., González, F., Gilmore, H., Feldman, M., Ganesan, S., Shih, N., Tomaszewski, J., Madabhushi, A.: Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks. In: SPIE Medical Imaging. International Society for Optics and Photonics, vol. 9041, pp. 904103 (2014)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 248–255. IEEE (2009)
Mahbod, A., Ecker, R., Ellinger, I.: Skin lesion classification using hybrid deep neural networks. arXiv preprint arXiv:1702.08434 (2017)
Macenko, M., Niethammer, M., Marron, J.S., Borland, D., Woosley, J.T., Guan, X., Schmitt, C., Thomas, N.E.: A method for normalizing histology slides for quantitative analysis. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2009, pp. 1107–1110. IEEE (2009)
Jain, A.K.: Fundamentals of Digital Image Processing. Prentice-Hall, Inc., Englewood Cliffs (1989)
Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)
Acknowledgments
This project is supported by Horizon 2020 Framework of the European Union in the CaSR Biomedicine project, No. 675228.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Mahbod, A., Ellinger, I., Ecker, R., Smedby, Ö., Wang, C. (2018). Breast Cancer Histological Image Classification Using Fine-Tuned Deep Network Fusion. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds) Image Analysis and Recognition. ICIAR 2018. Lecture Notes in Computer Science(), vol 10882. Springer, Cham. https://doi.org/10.1007/978-3-319-93000-8_85
Download citation
DOI: https://doi.org/10.1007/978-3-319-93000-8_85
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-92999-6
Online ISBN: 978-3-319-93000-8
eBook Packages: Computer ScienceComputer Science (R0)