[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Breast Cancer Histological Image Classification Using Fine-Tuned Deep Network Fusion

  • Conference paper
  • First Online:
Image Analysis and Recognition (ICIAR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10882))

Included in the following conference series:

Abstract

Breast cancer is the most common cancer type in women worldwide. Histological evaluation of the breast biopsies is a challenging task even for experienced pathologists. In this paper, we propose a fully automatic method to classify breast cancer histological images to four classes, namely normal, benign, in situ carcinoma and invasive carcinoma. The proposed method takes normalized hematoxylin and eosin stained images as input and gives the final prediction by fusing the output of two residual neural networks (ResNet) of different depth. These ResNets were first pre-trained on ImageNet images, and then fine-tuned on breast histological images. We found that our approach outperformed a previous published method by a large margin when applied on the BioImaging 2015 challenge dataset yielding an accuracy of 97.22%. Moreover, the same approach provided an excellent classification performance with an accuracy of 88.50% when applied on the ICIAR 2018 grand challenge dataset using 5-fold cross validation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://rdm.inesctec.pt/dataset/nis-2017-003.

  2. 2.

    https://iciar2018-challenge.grand-challenge.org/dataset/.

References

  1. Torre, L.A., Bray, F., Siegel, R.L., Ferlay, J., Lortet Tieulent, J., Jemal, A.: Global cancer statistics, 2012. CA Cancer J. Clin. 65(2), 87–108 (2015)

    Article  Google Scholar 

  2. Saadatmand, S., Bretveld, R., Siesling, S., Tilanus-Linthorst, M.M.A.: Influence of tumour stage at breast cancer detection on survival in modern times: population based study in 173 797 patients. BMJ 351, h4901 (2015)

    Article  Google Scholar 

  3. Myers, E.R., Moorman, P., Gierisch, J.M., Havrilesky, L.J., Grimm, L.J., Ghate, S., Davidson, B., Mongtomery, R.C., Crowley, M.J., McCrory, D.C.: Benefits and harms of breast cancer screening: a systematic review. JAMA 314(15), 1615–1634 (2015)

    Article  Google Scholar 

  4. Guray, M., Sahin, A.A.: Benign breast diseases: classification, diagnosis, and management. Oncol. 11(5), 435–449 (2006)

    Google Scholar 

  5. Malhotra, G.K., Zhao, X., Band, H., Band, V.: Histological, molecular and functional subtypes of breast cancers. Cancer Biol. Ther. 10(10), 955–960 (2010)

    Article  Google Scholar 

  6. Makki, J.: Diversity of breast carcinoma: histological subtypes and clinical relevance. Clin. Med. Insights Pathol. 8, 23 (2015)

    Google Scholar 

  7. Elmore, J.G., Longton, G.M., Carney, P.A., Geller, B.M., Onega, T., Tosteson, A.N.A., Nelson, H.D., Pepe, M.S., Allison, K.H., Schnitt, S.J.: Diagnostic concordance among pathologists interpreting breast biopsy specimens. JAMA 313(11), 1122–1132 (2015)

    Article  Google Scholar 

  8. Robertson, S., Azizpour, H., Smith, K., Hartman, J.: Digital image analysis in breast pathology-from image processing techniques to artificial intelligence. Translational Research 194, 19–35 (2018)

    Article  Google Scholar 

  9. Kowal, M., Filipczuk, P., Obuchowicz, A., Korbicz, J., Monczak, R.: Computer-aided diagnosis of breast cancer based on fine needle biopsy microscopic images. Comput. Biol. Med. 43(10), 1563–1572 (2013)

    Article  Google Scholar 

  10. Filipczuk, P., Fevens, T., Krzyzak, A., Monczak, R.: Computer-aided breast cancer diagnosis based on the analysis of cytological images of fine needle biopsies. IEEE Trans. Med. Imaging 32(12), 2169–2178 (2013)

    Article  Google Scholar 

  11. Brook, A., El-Yaniv, R., Isler, E., Kimmel, R., Meir, R., Peleg, D.: Breast cancer diagnosis from biopsy images using generic features and SVMs. Technical report, Technion - Israel Institute of Technology (2006)

    Google Scholar 

  12. Belsare, A.D., Mushrif, M.M., Pangarkar, M.A., Meshram, N.: Classification of breast cancer histopathology images using texture feature analysis. In: TENCON 2015–2015 IEEE Region 10 Conference, pp. 1–5. IEEE (2015)

    Google Scholar 

  13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  15. Araújo, T., Aresta, G., Castro, E., Rouco, J., Aguiar, P., Eloy, C., Polónia, A., Campilho, A.: Classification of breast cancer histology images using convolutional neural networks. PloS One 12(6), e0177544 (2017)

    Article  Google Scholar 

  16. Spanhol, F.A., Oliveira, L.S., Petitjean, C., Heutte, L.: Breast cancer histopathological image classification using convolutional neural networks. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 2560–2567. IEEE (2016)

    Google Scholar 

  17. Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Mitosis detection in breast cancer histology images with deep neural networks. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 411–418. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_51

    Chapter  Google Scholar 

  18. Cruz-Roa, A., Basavanhally, A., González, F., Gilmore, H., Feldman, M., Ganesan, S., Shih, N., Tomaszewski, J., Madabhushi, A.: Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks. In: SPIE Medical Imaging. International Society for Optics and Photonics, vol. 9041, pp. 904103 (2014)

    Google Scholar 

  19. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 248–255. IEEE (2009)

    Google Scholar 

  20. Mahbod, A., Ecker, R., Ellinger, I.: Skin lesion classification using hybrid deep neural networks. arXiv preprint arXiv:1702.08434 (2017)

  21. Macenko, M., Niethammer, M., Marron, J.S., Borland, D., Woosley, J.T., Guan, X., Schmitt, C., Thomas, N.E.: A method for normalizing histology slides for quantitative analysis. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2009, pp. 1107–1110. IEEE (2009)

    Google Scholar 

  22. Jain, A.K.: Fundamentals of Digital Image Processing. Prentice-Hall, Inc., Englewood Cliffs (1989)

    MATH  Google Scholar 

  23. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This project is supported by Horizon 2020 Framework of the European Union in the CaSR Biomedicine project, No. 675228.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirreza Mahbod .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mahbod, A., Ellinger, I., Ecker, R., Smedby, Ö., Wang, C. (2018). Breast Cancer Histological Image Classification Using Fine-Tuned Deep Network Fusion. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds) Image Analysis and Recognition. ICIAR 2018. Lecture Notes in Computer Science(), vol 10882. Springer, Cham. https://doi.org/10.1007/978-3-319-93000-8_85

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93000-8_85

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92999-6

  • Online ISBN: 978-3-319-93000-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics