Abstract
The unprecedented amount of visual data that is available nowadays has created new research opportunities and challenges in the areas of computer vision and machine learning. When dealing with large scale datasets, with a huge number of samples and features, the use of feature selection plays an important role for dimensionality reduction whilst allowing model interpretation, data understanding and knowledge extraction. This manuscript is focused on feature selection as applied to big visual data, including both traditional and deep approaches, and tries to give an overview of the cutting-edge techniques to deal with large-scale vision problems and identify technical challenges in the field.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)
Bolón-Canedo, V., Remeseiro, B., Sánchez-Maroño, N., Alonso-Betanzos, A.: mC-ReliefF: an extension of ReliefF for cost-based feature selection. In: International Conference on Agents and Artificial Intelligence, vol. 1, pp. 42–51 (2014)
Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A.: Feature Selection for High-Dimensional Data. AIFTA. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21858-8
Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A.: Recent advances and emerging challenges of feature selection in the context of big data. Knowl. Based Syst. 86, 33–45 (2015)
Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A., Benítez, J.M., Herrera, F.: A review of microarray datasets and applied feature selection methods. Inf. Sci. 282, 111–135 (2014)
Borji, A., Cheng, M.M., Jiang, H., Li, J.: Salient object detection: a benchmark. IEEE Trans. Image Process. 24(12), 5706–5722 (2015)
Cao, Z., Principe, J.C., Ouyang, B.: Group feature selection in image classification with multiple kernel learning. In: International Joint Conference on Neural Networks, pp. 1–5 (2015)
Chen, X.W., Lin, X.: Big data deep learning: challenges and perspectives. IEEE Access 2, 514–525 (2014)
Cheng, M.M., Mitra, N.J., Huang, X., Torr, P.H., Hu, S.M.: Global contrast based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 569–582 (2015)
Fang, Z., Hwang, J.N., Huo, X., Lee, H.J., Denzler, J.: Emergent Techniques and Applications for Big Visual Data. Int. J. Digit. Multimed. Broadcast. 2017, 2 (2017). Article ID 6468502
Guo, G., Fu, Y., Dyer, C.R., Huang, T.S.: Image-based human age estimation by manifold learning and locally adjusted robust regression. IEEE Trans. Image Process. 17(7), 1178–1188 (2008)
Guyon, I.: Feature Extraction: Foundations and Applications, vol. 207. Springer, Heidelberg (2006)
Hong, S., You, T., Kwak, S., Han, B.: Online tracking by learning discriminative saliency map with convolutional neural network. In: International Conference on Machine Learning, pp. 597–606 (2015)
Hu, W., Tan, T., Wang, L., Maybank, S.: A survey on visual surveillance of object motion and behaviors. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 34(3), 334–352 (2004)
Jia, Y., Huang, C., Darrell, T.: Beyond spatial pyramids: receptive field learning for pooled image features. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3370–3377 (2012)
Juan, L., Gwun, O.: A comparison of SIFT, PCA-SIFT and SURF. Int. J. Image Process. 3(4), 143–152 (2009)
Keim, D.A., Mansmann, F., Schneidewind, J., Ziegler, H.: Challenges in visual data analysis. In: International Conference on Information Visualization, pp. 9–16 (2006)
Lazar, C., Taminau, J., Meganck, S., Steenhoff, D., Coletta, A., Molter, C., de Schaetzen, V., Duque, R., Bersini, H., Nowe, A.: A survey on filter techniques for feature selection in gene expression microarray analysis. IEEE/ACM Trans. Comput. Biol. Bioinf. 9(4), 1106–1119 (2012)
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
Li, G., Yu, Y.: Visual saliency based on multiscale deep features. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5455–5463 (2015)
Li, G., Yu, Y.: Deep contrast learning for salient object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 478–487 (2016)
Li, G., Yu, Y.: Visual saliency detection based on multiscale deep CNN features. IEEE Trans. Image Process. 25(11), 5012–5024 (2016)
Li, X., Zhao, L., Wei, L., Yang, M.H., Wu, F., Zhuang, Y., Ling, H., Wang, J.: DeepSaliency: Multi-task deep neural network model for salient object detection. IEEE Trans. Image Process. 25(8), 3919–3930 (2016)
Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)
Malamas, E.N., Petrakis, E.G., Zervakis, M., Petit, L., Legat, J.D.: A survey on industrial vision systems, applications and tools. Image Vis. Comput. 21(2), 171–188 (2003)
Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 427–436 (2015)
Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Is object localization for free?-weakly-supervised learning with convolutional neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 685–694 (2015)
Saeys, Y., Inza, I., Larrañaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics 23(19), 2507–2517 (2007)
Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 618–626 (2017)
Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034 (2013)
Tan, M., Tsang, I.W., Wang, L.: Towards ultrahigh dimensional feature selection for big data. J. Mach. Learn. Res. 15, 1371–1429 (2014)
Wei, Y., Liang, X., Chen, Y., Shen, X., Cheng, M.M., Feng, J., Zhao, Y., Yan, S.: STC: A simple to complex framework for weakly-supervised semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(11), 2314–2320 (2017)
Weinberger, K.Q., Saul, L.K.: Unsupervised learning of image manifolds by semidefinite programming. Int. J. Comput. Vis. 70(1), 77–90 (2006)
Zhao, L., Hu, Q., Wang, W.: Heterogeneous feature selection with multi-modal deep neural networks and sparse group LASSO. IEEE Trans. Multimed. 17(11), 1936–1948 (2015)
Zhao, R., Ouyang, W., Li, H., Wang, X.: Saliency detection by multi-context deep learning. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1265–1274 (2015)
Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2921–2929 (2016)
Acknowledgments
This research has been partially funded by the Spanish Ministerio de Economía y Competitividad and FEDER funds of the European Union (projects TIN2015-65069-C2-1-R and TIN2015-65069-C2-2-R); and by the Consellería de Industria of the Xunta de Galicia (project GRC2014/035). Brais Cancela acknowledges the support of the Xunta de Galicia under its postdoctoral program.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Bolón-Canedo, V., Remeseiro, B., Cancela, B. (2018). Feature Selection for Big Visual Data: Overview and Challenges. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds) Image Analysis and Recognition. ICIAR 2018. Lecture Notes in Computer Science(), vol 10882. Springer, Cham. https://doi.org/10.1007/978-3-319-93000-8_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-93000-8_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-92999-6
Online ISBN: 978-3-319-93000-8
eBook Packages: Computer ScienceComputer Science (R0)