[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Multiclass Classification of Breast Cancer in Whole-Slide Images

  • Conference paper
  • First Online:
Image Analysis and Recognition (ICIAR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10882))

Included in the following conference series:

  • 6050 Accesses

Abstract

Breast cancer is one of the leading cause of cancer-related death worldwide. During the diagnosis of breast cancer, the histopathological assessment of Haemotoxylin and Eosin(H&E) stained slides provides important clinical values. By applying computer-aid diagnosis on whole-slide image(WSI), the efficiency and consistency of such assessment could be improved. In this paper, we propose a deep learning-based framework that classifies H&E stained WSIs into regions of normal tissue, benign lesion, in-situ carcinoma and invasive carcinoma. The framework utilizes both microscopy images and WSIs to train a patch classifier in two stages. The underlying classifier is based on Inception-Resnet-v2. This framework won both parts of the ICIAR2018 Grand Challenge on Breast Cancer Histology Images [4] competition, achieved a part A multiclass accuracy of 87% and part B score of 0.6929.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Camelyon16 (2016). https://camelyon16.grand-challenge.org/results/

  2. Camelyon17 (2017). https://camelyon17.grand-challenge.org/results/

  3. Breast Cancer Facts and Figures 2017–2018 (2018). https://www.cancer.org/research/cancer-facts-statistics/breast-cancer-facts-figures.html

  4. ICIAR 2018 Grand Challenge on Breast Cancer Histology Images (2018). https://iciar2018-challenge.grand-challenge.org/

  5. Araújo, T., Aresta, G., Castro, E., Rouco, J., Aguiar, P., Eloy, C., Polónia, A., Campilho, A.: Classification of breast cancer histology images using convolutional neural networks. PLOS ONE 12(6), 1–14 (2017). https://doi.org/10.1371/journal.pone.0177544

    Article  Google Scholar 

  6. Elmore, J.G., Longton, G.M., Carney, P.A., Geller, B.M., Onega, T., Tosteson, A.N.A., et al.: Diagnostic concordance among pathologists interpreting breast biopsy specimens. JAMA 313(11), 1122–1132 (2015). https://doi.org/10.1001/jama.2015.1405

    Article  Google Scholar 

  7. Habibzadeh, M.N., Jannesary, M., Aboulkheyr, H., Khosravi, P., Elemento, O., Totonchi, M., Hajirasouliha, I.: Breast cancer histopathological image classification: a deep learning approach. bioRxiv (2018). https://www.biorxiv.org/content/early/2018/01/04/242818

  8. Jain, R.K., Mehta, R., Dimitrov, R., Larsson, L.G., Musto, P.M., Hodges, K.B., Ulbright, T.M., Hattab, E.M., Agaram, N., Idrees, M.T., Badve, S.: Atypical ductal hyperplasia: interobserver and intraobserver variability. Mod. Pathol. 24, 917–923 (2011)

    Article  Google Scholar 

  9. Janowczyk, A., Madabhushi, A.: Deep learning for digital pathology image analysis: a comprehensive tutorial with selected use cases. J. Pathol. Inform. 7(1), 29 (2016). http://www.jpathinformatics.org/article.asp?issn=2153-3539;year=2016;volume=7;issue=1;spage=29;epage=29;aulast=Janowczyk;t=6

    Article  Google Scholar 

  10. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

  11. Schnitt, S., Connolly, J., Tavassoli, F.A., Fechner, R., Kempson, R.L., Gelman, R., Page, D.: Interobserver reproducibility in the diagnosis of ductal proliferative breast lesions using standardized criteria. Am. J. Surg. Pathol. 16(12), 1133–1143 (1992)

    Article  Google Scholar 

  12. Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-Scale Image Recognition. ArXiv e-prints, September 2014

    Google Scholar 

  13. Spanhol, F.A., Oliveira, L.S., Petitjean, C., Heutte, L.: A dataset for breast cancer histopathological image classification. IEEE Trans. Biomed. Eng. 63(7), 1455–1462 (2016)

    Article  Google Scholar 

  14. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning, ArXiv e-prints, February 2016

    Google Scholar 

  15. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going Deeper with Convolutions. ArXiv e-prints, September 2014

    Google Scholar 

  16. Zhong, A., Li, Q.: HMS-MGH-CCDS Camelyon17 presentation (2017). https://camelyon17.grand-challenge.org/serve/public_html/presentations/HMS-MGH-CCDS_Camelyon17_presentation.pptx

Download references

Acknowledgements

We would like to thank the organizers of ICIAR2018 and BACH2018 who supported and organized this challenge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scotty Kwok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kwok, S. (2018). Multiclass Classification of Breast Cancer in Whole-Slide Images. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds) Image Analysis and Recognition. ICIAR 2018. Lecture Notes in Computer Science(), vol 10882. Springer, Cham. https://doi.org/10.1007/978-3-319-93000-8_106

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93000-8_106

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92999-6

  • Online ISBN: 978-3-319-93000-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics