[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

GAparsimony: An R Package for Searching Parsimonious Models by Combining Hyperparameter Optimization and Feature Selection

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10870))

Included in the following conference series:

  • 2546 Accesses

Abstract

Nowadays, there is an increasing interest in automating KDD processes. Thanks to the increasing power and costs reduction of computation devices, the search of best features and model parameters can be solved with different meta-heuristics. Thus, researchers can be focused in other important tasks like data wrangling or feature engineering. In this contribution, GAparsimony R package is presented. This library implements GA-PARSIMONY methodology that has been published in previous journals and HAIS conferences. The objective of this paper is to show how to use GAparsimony for searching accurate parsimonious models by combining feature selection, hyperparameter optimization, and parsimonious model search. Therefore, this paper covers the cautions and considerations required for finding a robust parsimonious model by using this package and with a regression example that can be easily adapted for another problem, database or algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 67.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 84.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Antonanzas-Torres, F., Urraca, R., Antonanzas, J., Fernandez-Ceniceros, J., de Pison, F.M.: Generation of daily global solar irradiation with support vector machines for regression. Energy Convers. Manag. 96, 277–286 (2015)

    Article  Google Scholar 

  2. Bergstra, J., Komer, B., Eliasmith, C., Yamins, D., Cox, D.D.: Hyperopt: a python library for model selection and hyperparameter optimization. Comput. Sci. Discov. 8(1), 014008 (2015)

    Article  Google Scholar 

  3. Bischl, B., Lang, M., Kotthoff, L., Schiffner, J., Richter, J., Studerus, E., Casalicchio, G., Jones, Z.M.: mlr: Machine learning in R. J. Mach. Learn. Res. 17(170), 1–5 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Fernandez-Ceniceros, J., Sanz-Garcia, A., Antonanzas-Torres, F., de Pison, F.M.: A numerical-informational approach for characterising the ductile behaviour of the t-stub component. part 2: parsimonious soft-computing-based metamodel. Eng. Struct. 82, 249–260 (2015)

    Article  Google Scholar 

  5. Gorissen, D., Couckuyt, I., Demeester, P., Dhaene, T., Crombecq, K.: A surrogate modeling and adaptive sampling toolbox for computer based design. J. Mach. Learn. Res. 11, 2051–2055 (2010)

    Google Scholar 

  6. Hashem, I.A., Yaqoob, I., Anuar, N.B., Mokhtar, S., Gani, A., Ullah Khan, S.: The rise of big data on cloud computing: review and open research issues. Inf. Syst. 47, 98–115 (2015)

    Article  Google Scholar 

  7. Martinez-de-Pison, F.: GAparsimony package for R (2017). https://github.com/jpison/GAparsimony

  8. Michalewicz, Z., Janikow, C.Z.: Handling constraints in genetic algorithms. In: ICGA, pp. 151–157 (1991)

    Google Scholar 

  9. Olson, R.S., Bartley, N., Urbanowicz, R.J., Moore, J.H.: Evaluation of a tree-based pipeline optimization tool for automating data science. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016, GECCO ’16, pp. 485–492. ACM, New York (2016)

    Google Scholar 

  10. Sanz-Garcia, A., Fernandez-Ceniceros, J., Antonanzas-Torres, F., Pernia-Espinoza, A., Martinez-de Pison, F.J.: GA-PARSIMONY: A GA-SVR approach with feature selection and parameter optimization to obtain parsimonious solutions for predicting temperature settings in a continuous annealing furnace. Appl. Soft Comput. 35, 13–28 (2015)

    Article  Google Scholar 

  11. Sanz-García, A., Fernández-Ceniceros, J., Antoñanzas-Torres, F., Martínez-de Pisón, F.J.: Parsimonious support vector machines modeling for set points in industrial processes based on genetic algorithm optimization. In: International Joint Conference SOCO13-CISIS13-ICEUTE13, Advances in Intelligent Systems and Computing, vol. 239, pp. 1–10. Springer. Cham (2014)

    Google Scholar 

  12. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’13, pp. 847–855. ACM, New York (2013)

    Google Scholar 

  13. Urraca, R., Sodupe-Ortega, E., Antonanzas, J., Antonanzas-Torres, F., de Pison, F.M.: Evaluation of a novel ga-based methodology for model structure selection: the ga-parsimony. Neurocomputing 271, 9–17 (2018)

    Article  Google Scholar 

  14. Urraca, R., Sanz-Garcia, A., Fernandez-Ceniceros, J., Sodupe-Ortega, E., Martinez-de-Pison, F.J.: Improving hotel room demand forecasting with a hybrid GA-SVR methodology based on skewed data transformation, feature selection and parsimony tuning. In: Onieva, E., Santos, I., Osaba, E., Quintián, H., Corchado, E. (eds.) HAIS 2015. LNCS (LNAI), vol. 9121, pp. 632–643. Springer, Cham (2015)

    Chapter  Google Scholar 

  15. Ye, J.: On measuring and correcting the effects of data mining and model selection. J. Am. Stat. Assoc. 93(441), 120–131 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are greatly indebted to Banco Santander for the APPI17/04 fellowship and to the University of La Rioja for the EGI16/19 fellowship. Also, A. Pernia wants to express her gratitude with the Instituto de Estudios Riojanos (IER) for the fellowship. This work used the Beronia cluster (Universidad de La Rioja), which is supported by FEDER-MINECO grant number UNLR-094E-2C-225.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. J. Martinez-de-Pison .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martinez-de-Pison, F.J., Gonzalez-Sendino, R., Ferreiro, J., Fraile, E., Pernia-Espinoza, A. (2018). GAparsimony: An R Package for Searching Parsimonious Models by Combining Hyperparameter Optimization and Feature Selection. In: de Cos Juez, F., et al. Hybrid Artificial Intelligent Systems. HAIS 2018. Lecture Notes in Computer Science(), vol 10870. Springer, Cham. https://doi.org/10.1007/978-3-319-92639-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92639-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92638-4

  • Online ISBN: 978-3-319-92639-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics