Abstract
Computer aided applications in Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) are increasingly gaining attention as important tools to asses the risk of breast cancer. Chest wall detection and whole breast segmentation require effective solutions to increase the potential benefits of computer aided tools for tumor detection. Here we propose a 3D extension of Gabor filtering for detection of wall-like regions in medical imaging, and prove its effectiveness in chest-wall detection.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Dalmış, M.U., Litjens, G., Holland, K., Setio, A., Mann, R., Karssemeijer, N., Gubern-Mérida, A.: Using deep learning to segment breast and fibroglandular tissue in MRI volumes. Med. Phys. 44(2), 533–546 (2017)
Gubern-Mérida, A., Kallenberg, M., Mann, R.M., Martí, R., Karssemeijer, N.: Breast Segmentation and density estimation in breast MRI: a fully automatic framework. IEEE J. Biomed. Health Inform. 19(1), 349–357 (2015)
Gubern-Mérida, A., Wang, L., Kallenberg, M., Martí, R., Hahn, H.K., Karssemeijer, N.: Breast segmentation in MRI: quantitative evaluation of three methods. vol. 8669, p. 86693G. International Society for Optics and Photonics, March 2013
Haq, I.U., Nagoaka, R., Makino, T., Tabata, T., Saijo, Y.: 3D gabor wavelet based vessel filtering of photoacoustic images. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3883–3886, August 2016
Heimann, T., Ginneken, B.V., Styner, M.A., Arzhaeva, Y., Aurich, V., Bauer, C., Beck, A., Becker, C., Beichel, R., Bekes, G., Bello, F., Binnig, G., Bischof, H., Bornik, A., Cashman, P.M.M., Chi, Y., Cordova, A., Dawant, B.M., Fidrich, M., Furst, J.D., Furukawa, D., Grenacher, L., Hornegger, J., KainmÜller, D., Kitney, R.I., Kobatake, H., Lamecker, H., Lange, T., Lee, J., Lennon, B., Li, R., Li, S., Meinzer, H.P., Nemeth, G., Raicu, D.S., Rau, A.M., Rikxoort, E.M.V., Rousson, M., Rusko, L., Saddi, K.A., Schmidt, G., Seghers, D., Shimizu, A., Slagmolen, P., Sorantin, E., Soza, G., Susomboon, R., Waite, J.M., Wimmer, A., Wolf, I.: Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans. Med. Imaging 28(8), 1251–1265 (2009)
Hong, L., Wan, Y., Jain, A.: Fingerprint image enhancement: algorithm and performance evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 777–789 (1998)
Jiang, L., Hu, X., Xiao, Q., Gu, Y., Li, Q.: Fully automated segmentation of whole breast using dynamic programming in dynamic contrast enhanced MR images. Med. Phys. 44(6), 2400–2414 (2017)
Kass, M., Witkin, A.: Analyzing oriented patterns. Comput. Vis. Graph. Image Process. 37(3), 362–385 (1987)
Lin, M., Chen, J.H., Wang, X., Chan, S., Chen, S., Su, M.Y.: Template-based automatic breast segmentation on MRI by excluding the chest region. Med. Phys. 40(12), 122301 (2013)
Milenković, J., Chambers, O., Marolt Mušič, M., Tasič, J.F.: Automated breast-region segmentation in the axial breast MR images. Comput. Biol. Med. 62, 55–64 (2015)
Ortiz, C.G., Martel, A.L.: Automatic atlas-based segmentation of the breast in MRI for 3D breast volume computation. Med. Phys. 39(10), 5835–5848 (2012)
Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)
Prima, S., Ourselin, S., Ayache, N.: Computation of the mid-sagittal plane in 3-D brain images. IEEE Trans. Med. Imaging 21(2), 122–138 (2002)
Qian, Z., Metaxas, D.N., Axel, L.: Extraction and tracking of MRI tagging sheets using a 3D gabor filter bank. In: 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 711–714, August 2006
Reed, T.R.: Motion analysis using the 3-D gabor transform. In: Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers. vol. 1, pp. 506–509, November 1996
Wang, Y., Chua, C.S.: Face recognition from 2D and 3D images using 3D Gabor filters. Image Vis. Comput. 23(11), 1018–1028 (2005)
Wu, S., Weinstein, S.P., Conant, E.F., Schnall, M.D., Kontos, D.: Automated chest wall line detection for whole-breast segmentation in sagittal breast MR images. Med. Phys. 40(4), 042301 (2013)
Xu, Z., Allen, W.M., Baucom, R.B., Poulose, B.K., Landman, B.A.: Texture analysis improves level set segmentation of the anterior abdominal wall. Med. Phys. 40(12), 121901 (2013)
Acknowledgment
We’d like to thank Marc Lobbes for the provision of the DCE-MRI database. This work is supported by Marie Sklodowska-Curie actions (MSCA-IF-GF-656886).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Illan, I.A., Matos, J.P., Ramirez, J., Gorriz, J.M., Foo, S., Meyer-Baese, A. (2018). 3D Gabor Filters for Chest Segmentation in DCE-MRI. In: de Cos Juez, F., et al. Hybrid Artificial Intelligent Systems. HAIS 2018. Lecture Notes in Computer Science(), vol 10870. Springer, Cham. https://doi.org/10.1007/978-3-319-92639-1_37
Download citation
DOI: https://doi.org/10.1007/978-3-319-92639-1_37
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-92638-4
Online ISBN: 978-3-319-92639-1
eBook Packages: Computer ScienceComputer Science (R0)