[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

3D Gabor Filters for Chest Segmentation in DCE-MRI

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10870))

Included in the following conference series:

  • 2626 Accesses

Abstract

Computer aided applications in Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) are increasingly gaining attention as important tools to asses the risk of breast cancer. Chest wall detection and whole breast segmentation require effective solutions to increase the potential benefits of computer aided tools for tumor detection. Here we propose a 3D extension of Gabor filtering for detection of wall-like regions in medical imaging, and prove its effectiveness in chest-wall detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 67.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 84.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dalmış, M.U., Litjens, G., Holland, K., Setio, A., Mann, R., Karssemeijer, N., Gubern-Mérida, A.: Using deep learning to segment breast and fibroglandular tissue in MRI volumes. Med. Phys. 44(2), 533–546 (2017)

    Article  Google Scholar 

  2. Gubern-Mérida, A., Kallenberg, M., Mann, R.M., Martí, R., Karssemeijer, N.: Breast Segmentation and density estimation in breast MRI: a fully automatic framework. IEEE J. Biomed. Health Inform. 19(1), 349–357 (2015)

    Article  Google Scholar 

  3. Gubern-Mérida, A., Wang, L., Kallenberg, M., Martí, R., Hahn, H.K., Karssemeijer, N.: Breast segmentation in MRI: quantitative evaluation of three methods. vol. 8669, p. 86693G. International Society for Optics and Photonics, March 2013

    Google Scholar 

  4. Haq, I.U., Nagoaka, R., Makino, T., Tabata, T., Saijo, Y.: 3D gabor wavelet based vessel filtering of photoacoustic images. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3883–3886, August 2016

    Google Scholar 

  5. Heimann, T., Ginneken, B.V., Styner, M.A., Arzhaeva, Y., Aurich, V., Bauer, C., Beck, A., Becker, C., Beichel, R., Bekes, G., Bello, F., Binnig, G., Bischof, H., Bornik, A., Cashman, P.M.M., Chi, Y., Cordova, A., Dawant, B.M., Fidrich, M., Furst, J.D., Furukawa, D., Grenacher, L., Hornegger, J., KainmÜller, D., Kitney, R.I., Kobatake, H., Lamecker, H., Lange, T., Lee, J., Lennon, B., Li, R., Li, S., Meinzer, H.P., Nemeth, G., Raicu, D.S., Rau, A.M., Rikxoort, E.M.V., Rousson, M., Rusko, L., Saddi, K.A., Schmidt, G., Seghers, D., Shimizu, A., Slagmolen, P., Sorantin, E., Soza, G., Susomboon, R., Waite, J.M., Wimmer, A., Wolf, I.: Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans. Med. Imaging 28(8), 1251–1265 (2009)

    Article  Google Scholar 

  6. Hong, L., Wan, Y., Jain, A.: Fingerprint image enhancement: algorithm and performance evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 777–789 (1998)

    Article  Google Scholar 

  7. Jiang, L., Hu, X., Xiao, Q., Gu, Y., Li, Q.: Fully automated segmentation of whole breast using dynamic programming in dynamic contrast enhanced MR images. Med. Phys. 44(6), 2400–2414 (2017)

    Article  Google Scholar 

  8. Kass, M., Witkin, A.: Analyzing oriented patterns. Comput. Vis. Graph. Image Process. 37(3), 362–385 (1987)

    Article  Google Scholar 

  9. Lin, M., Chen, J.H., Wang, X., Chan, S., Chen, S., Su, M.Y.: Template-based automatic breast segmentation on MRI by excluding the chest region. Med. Phys. 40(12), 122301 (2013)

    Article  Google Scholar 

  10. Milenković, J., Chambers, O., Marolt Mušič, M., Tasič, J.F.: Automated breast-region segmentation in the axial breast MR images. Comput. Biol. Med. 62, 55–64 (2015)

    Article  Google Scholar 

  11. Ortiz, C.G., Martel, A.L.: Automatic atlas-based segmentation of the breast in MRI for 3D breast volume computation. Med. Phys. 39(10), 5835–5848 (2012)

    Article  Google Scholar 

  12. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

  13. Prima, S., Ourselin, S., Ayache, N.: Computation of the mid-sagittal plane in 3-D brain images. IEEE Trans. Med. Imaging 21(2), 122–138 (2002)

    Article  Google Scholar 

  14. Qian, Z., Metaxas, D.N., Axel, L.: Extraction and tracking of MRI tagging sheets using a 3D gabor filter bank. In: 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 711–714, August 2006

    Google Scholar 

  15. Reed, T.R.: Motion analysis using the 3-D gabor transform. In: Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers. vol. 1, pp. 506–509, November 1996

    Google Scholar 

  16. Wang, Y., Chua, C.S.: Face recognition from 2D and 3D images using 3D Gabor filters. Image Vis. Comput. 23(11), 1018–1028 (2005)

    Article  Google Scholar 

  17. Wu, S., Weinstein, S.P., Conant, E.F., Schnall, M.D., Kontos, D.: Automated chest wall line detection for whole-breast segmentation in sagittal breast MR images. Med. Phys. 40(4), 042301 (2013)

    Article  Google Scholar 

  18. Xu, Z., Allen, W.M., Baucom, R.B., Poulose, B.K., Landman, B.A.: Texture analysis improves level set segmentation of the anterior abdominal wall. Med. Phys. 40(12), 121901 (2013)

    Article  Google Scholar 

Download references

Acknowledgment

We’d like to thank Marc Lobbes for the provision of the DCE-MRI database. This work is supported by Marie Sklodowska-Curie actions (MSCA-IF-GF-656886).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Illan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Illan, I.A., Matos, J.P., Ramirez, J., Gorriz, J.M., Foo, S., Meyer-Baese, A. (2018). 3D Gabor Filters for Chest Segmentation in DCE-MRI. In: de Cos Juez, F., et al. Hybrid Artificial Intelligent Systems. HAIS 2018. Lecture Notes in Computer Science(), vol 10870. Springer, Cham. https://doi.org/10.1007/978-3-319-92639-1_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92639-1_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92638-4

  • Online ISBN: 978-3-319-92639-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics