[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

On the Use of Random Discretization and Dimensionality Reduction in Ensembles for Big Data

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10870))

Included in the following conference series:

Abstract

Massive data growth in recent years has made data reduction techniques to gain a special popularity because of their ability to reduce this enormous amount of data, also called Big Data. Random Projection Random Discretization is an innovative ensemble method. It uses two data reduction techniques to create more informative data, their proposed Random Discretization, and Random Projections (RP). However, RP has some shortcomings that can be solved by more powerful methods such as Principal Components Analysis (PCA). Aiming to tackle this problem, we propose a new ensemble method using the Apache Spark framework and PCA for dimensionality reduction, named Random Discretization Dimensionality Reduction Ensemble. In our experiments on five Big Data datasets, we show that our proposal achieves better prediction performance than the original algorithm and Random Forest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 67.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 84.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    IDC: The Digital Universe of Opportunities. 2018 [Online] Available: http://www.emc.com/infographics/digital-universe-2014.htm.

  2. 2.

    https://spark-packages.org/package/djgarcia/RD2R.

  3. 3.

    Apache Hadoop Project 2018 [Online] Available: https://hadoop.apache.org/.

  4. 4.

    Apache Spark Project 2018 [Online] Available: https://spark.apache.org/.

References

  1. Ahmad, A., Brown, G.: Random projection random discretization ensembles - ensembles of linear multivariate decision trees. IEEE Trans. Knowl. Data Eng. 26(5), 1225–1239 (2014)

    Article  Google Scholar 

  2. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  3. Dasgupta, S.: Experiments with random projection. In: Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence, UAI 2000, pp. 143–151. Morgan Kaufmann Publishers Inc., San Francisco (2000)

    Google Scholar 

  4. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)

    Article  Google Scholar 

  5. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45014-9_1

    Chapter  Google Scholar 

  6. Fradkin, D., Madigan, D.: Experiments with random projections for machine learning. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2003, pp. 517–522. ACM, New York (2003)

    Google Scholar 

  7. García, S., Luengo, J., Sáez, J., López, V., Herrera, F.: A survey of discretization techniques: taxonomy and empirical analysis in supervised learning. IEEE Trans. Knowl. Data Eng. 25(4), 734–750 (2013)

    Article  Google Scholar 

  8. García, S., Luengo, J., Herrera, F.: Tutorial on practical tips of the most influential data preprocessing algorithms in data mining. Knowl. Syst. 98, 1–29 (2016)

    Article  Google Scholar 

  9. García, S., Luengo, J., Herrera, F.: Data Preprocessing in Data Mining. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-319-10247-4

    Book  Google Scholar 

  10. García, S., Ramírez-Gallego, S., Luengo, J., Benítez, J.M., Herrera, F.: Big data preprocessing: methods and prospects. Big Data Anal. 1(1), 9 (2016)

    Article  Google Scholar 

  11. García-Gil, D., Ramírez-Gallego, S., García, S., Herrera, F.: A comparison on scalability for batch big data processing on Apache Spark and Apache Flink. Big Data Anal. 2(1), 11 (2017)

    Article  Google Scholar 

  12. Johnson, W.B., Lindenstrauss, J.: Extensions of Lipschitz mappings into a Hilbert space. Contemp. Math. 26(189–206), 1 (1984)

    MathSciNet  MATH  Google Scholar 

  13. Lin, J.: Mapreduce is good enough? If all you have is a hammer, throw away everything that’s not a nail!. Big Data 1(1), 28–37 (2013)

    Article  Google Scholar 

  14. Ramírez-Gallego, S., García, S., Benítez, J., Herrera, F.: A distributed evolutionary multivariate discretizer for big data processing on apache spark. Swarm Evolut. Comput. 38, 240–250 (2018)

    Article  Google Scholar 

  15. Ramírez-Gallego, S., Fernández, A., García, S., Chen, M., Herrera, F.: Big data: tutorial and guidelines on information and process fusion for analytics algorithms with mapreduce. Inf. Fusion 42, 51–61 (2018)

    Article  Google Scholar 

  16. del Río, S., López, V., Benítez, J.M., Herrera, F.: On the use of mapreduce for imbalanced big data using random forest. Inf. Sci. 285, 112–137 (2014)

    Article  Google Scholar 

  17. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In: Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation, NSDI 2012, pp. 15–28. USENIX Association, Berkeley (2012)

    Google Scholar 

Download references

Acknowledgments

This contribution is supported by FEDER, the Spanish National Research Projects TIN2014-57251-P and TIN2017-89517-P, and the Project BigDaP-TOOLS - Ayudas Fundación BBVA a Equipos de Investigación Científica 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego García-Gil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

García-Gil, D., Ramírez-Gallego, S., García, S., Herrera, F. (2018). On the Use of Random Discretization and Dimensionality Reduction in Ensembles for Big Data. In: de Cos Juez, F., et al. Hybrid Artificial Intelligent Systems. HAIS 2018. Lecture Notes in Computer Science(), vol 10870. Springer, Cham. https://doi.org/10.1007/978-3-319-92639-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92639-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92638-4

  • Online ISBN: 978-3-319-92639-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics