Abstract
Most image registration methods involve multiple user-defined tuning parameters, such as regularization weights and smoothing parameters. Changing these tuning parameters leads to differences in the local deformation estimates that result from the registration algorithm. Uncertainty in the optimal value of the tuning parameters thus leads to uncertainty in the local deformation estimates. In this work, we propose a method to quantify this uncertainty using an efficient surrogate modeling approach based on polynomial chaos expansion. Given a specified distribution on each input tuning parameter, this approach requires only a few image registration runs to characterize the distribution of output deformation estimates at each voxel. In experiments on liver CT images, we evaluate the accuracy of the uncertainty estimate by comparing with a brute force Monte Carlo estimate. The results show that there is a negligible difference between estimates of Monte-Carlo simulation and the proposed method. The proposed method thus provides a good indication of the uncertainty in local deformation estimates due to uncertainty in the optimal setting of tuning parameters.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Blatman, G., Sudret, B.: Adaptive sparse polynomial chaos expansion based on least angle regression. J. Comput. Phys. 230(6), 2345–2367 (2011)
Crestaux, T., Matre, O.L., Martinez, J.M.: Polynomial chaos expansion for sensitivity analysis. Reliab. Eng. Syst. Saf. 94(7), 1161–1172 (2009)
Gunay, G., Luu, M.H., Moelker, A., van Walsum, T., Klein, S.: Semiautomated registration of pre- and intraoperative CT for image-guided percutaneous liver tumor ablation interventions. Med. Phys. 44(7), 3718–3725 (2017)
Gunay, G., van der Voort, S., Luu, M.H., Moelker, A., Klein, S.: Parameter sensitivity analysis in medical image registration algorithms using polynomial chaos expansions. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 335–343. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_39
Hu, C., Youn, B.D.: Adaptive-sparse polynomial chaos expansion for reliability analysis and design of complex engineering systems. Struct. Multidiscip. Optim. 43(3), 419–442 (2011)
Hub, M., Kessler, M.L., Karger, C.P.: A stochastic approach to estimate the uncertainty involved in B-spline image registration. IEEE Trans. Med. Imaging 28(11), 1708–1716 (2009)
Kybic, J.: Bootstrap resampling for image registration uncertainty estimation without ground truth. IEEE Trans. Image Process. 19(1), 64–73 (2010)
Muenzing, S.E., van Ginneken, B., Murphy, K., Pluim, J.P.: Supervised quality assessment of medical image registration: application to intra-patient CT lung registration. Med. Image Anal. 16, 1521–1531 (2012)
Perko, Z., Gilli, L., Lathouwers, D., Kloosterman, J.L.: Grid and basis adaptive polynomial chaos techniques for sensitivity and uncertainty analysis. J. Comput. Phys. 260, 54–84 (2014)
Perko, Z., van der Voort, S.R., van de Water, S., Hartman, C.M.H., Hoogeman, M., Lathouwers, D.: Fast and accurate sensitivity analysis of IMPT treatment plans using polynomial chaos expansion. Phys. Med. Biol. 61(12), 4646 (2016)
Risholm, P., Pieper, S., Samset, E., Wells, W.M.: Summarizing and visualizing uncertainty in non-rigid registration. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6362, pp. 554–561. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15745-5_68
Simpson, I.J., Schnabel, J.A., Groves, A.R., Andersson, J.L., Woolrich, M.W.: Probabilistic inference of regularisation in non-rigid registration. NeuroImage 59(3), 2438–2451 (2012)
Sobol, I.M.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55(1), 271–280 (2001)
Sokooti, H., Saygili, G., Glocker, B., Lelieveldt, B.P.F., Staring, M.: Accuracy estimation for medical image registration using regression forests. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 107–115. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46726-9_13
Sotiras, A., Davatzikos, C., Paragios, N.: Deformable medical image registration: a survey. IEEE Trans. Med. Imaging 32(7), 1153–1190 (2013)
Staring, M., Klein, S., Pluim, J.P.W.: A rigidity penalty term for nonrigid registration. Med. Phys. 34(11), 4098–4108 (2007)
Sudret, B.: Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 93(7), 964–979 (2008)
van der Voort, S., van de Water, S., Perk, Z., Heijmen, B., Lathouwers, D., Hoogeman, M.: Robustness recipes for minimax robust optimization in intensity modulated proton therapy for oropharyngeal cancer patients. Int. J. Radiat. Oncol. Biol. Phys. 95(1), 163–170 (2016)
Wiener, N.: The homogeneous chaos. Am. J. Math. 60(4), 897–936 (1938)
Xiu, D., Karniadakis, G.E.: The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2002)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Gunay, G., van der Voort, S., Luu, M.H., Moelker, A., Klein, S. (2018). Local Image Registration Uncertainty Estimation Using Polynomial Chaos Expansions. In: Klein, S., Staring, M., Durrleman, S., Sommer, S. (eds) Biomedical Image Registration. WBIR 2018. Lecture Notes in Computer Science(), vol 10883. Springer, Cham. https://doi.org/10.1007/978-3-319-92258-4_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-92258-4_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-92257-7
Online ISBN: 978-3-319-92258-4
eBook Packages: Computer ScienceComputer Science (R0)