[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Local Image Registration Uncertainty Estimation Using Polynomial Chaos Expansions

  • Conference paper
  • First Online:
Biomedical Image Registration (WBIR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10883))

Included in the following conference series:

Abstract

Most image registration methods involve multiple user-defined tuning parameters, such as regularization weights and smoothing parameters. Changing these tuning parameters leads to differences in the local deformation estimates that result from the registration algorithm. Uncertainty in the optimal value of the tuning parameters thus leads to uncertainty in the local deformation estimates. In this work, we propose a method to quantify this uncertainty using an efficient surrogate modeling approach based on polynomial chaos expansion. Given a specified distribution on each input tuning parameter, this approach requires only a few image registration runs to characterize the distribution of output deformation estimates at each voxel. In experiments on liver CT images, we evaluate the accuracy of the uncertainty estimate by comparing with a brute force Monte Carlo estimate. The results show that there is a negligible difference between estimates of Monte-Carlo simulation and the proposed method. The proposed method thus provides a good indication of the uncertainty in local deformation estimates due to uncertainty in the optimal setting of tuning parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Blatman, G., Sudret, B.: Adaptive sparse polynomial chaos expansion based on least angle regression. J. Comput. Phys. 230(6), 2345–2367 (2011)

    Article  MathSciNet  Google Scholar 

  2. Crestaux, T., Matre, O.L., Martinez, J.M.: Polynomial chaos expansion for sensitivity analysis. Reliab. Eng. Syst. Saf. 94(7), 1161–1172 (2009)

    Article  Google Scholar 

  3. Gunay, G., Luu, M.H., Moelker, A., van Walsum, T., Klein, S.: Semiautomated registration of pre- and intraoperative CT for image-guided percutaneous liver tumor ablation interventions. Med. Phys. 44(7), 3718–3725 (2017)

    Article  Google Scholar 

  4. Gunay, G., van der Voort, S., Luu, M.H., Moelker, A., Klein, S.: Parameter sensitivity analysis in medical image registration algorithms using polynomial chaos expansions. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 335–343. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_39

    Chapter  Google Scholar 

  5. Hu, C., Youn, B.D.: Adaptive-sparse polynomial chaos expansion for reliability analysis and design of complex engineering systems. Struct. Multidiscip. Optim. 43(3), 419–442 (2011)

    Article  MathSciNet  Google Scholar 

  6. Hub, M., Kessler, M.L., Karger, C.P.: A stochastic approach to estimate the uncertainty involved in B-spline image registration. IEEE Trans. Med. Imaging 28(11), 1708–1716 (2009)

    Article  Google Scholar 

  7. Kybic, J.: Bootstrap resampling for image registration uncertainty estimation without ground truth. IEEE Trans. Image Process. 19(1), 64–73 (2010)

    Article  MathSciNet  Google Scholar 

  8. Muenzing, S.E., van Ginneken, B., Murphy, K., Pluim, J.P.: Supervised quality assessment of medical image registration: application to intra-patient CT lung registration. Med. Image Anal. 16, 1521–1531 (2012)

    Article  Google Scholar 

  9. Perko, Z., Gilli, L., Lathouwers, D., Kloosterman, J.L.: Grid and basis adaptive polynomial chaos techniques for sensitivity and uncertainty analysis. J. Comput. Phys. 260, 54–84 (2014)

    Article  MathSciNet  Google Scholar 

  10. Perko, Z., van der Voort, S.R., van de Water, S., Hartman, C.M.H., Hoogeman, M., Lathouwers, D.: Fast and accurate sensitivity analysis of IMPT treatment plans using polynomial chaos expansion. Phys. Med. Biol. 61(12), 4646 (2016)

    Article  Google Scholar 

  11. Risholm, P., Pieper, S., Samset, E., Wells, W.M.: Summarizing and visualizing uncertainty in non-rigid registration. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6362, pp. 554–561. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15745-5_68

    Chapter  Google Scholar 

  12. Simpson, I.J., Schnabel, J.A., Groves, A.R., Andersson, J.L., Woolrich, M.W.: Probabilistic inference of regularisation in non-rigid registration. NeuroImage 59(3), 2438–2451 (2012)

    Article  Google Scholar 

  13. Sobol, I.M.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55(1), 271–280 (2001)

    Article  MathSciNet  Google Scholar 

  14. Sokooti, H., Saygili, G., Glocker, B., Lelieveldt, B.P.F., Staring, M.: Accuracy estimation for medical image registration using regression forests. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 107–115. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46726-9_13

    Chapter  Google Scholar 

  15. Sotiras, A., Davatzikos, C., Paragios, N.: Deformable medical image registration: a survey. IEEE Trans. Med. Imaging 32(7), 1153–1190 (2013)

    Article  Google Scholar 

  16. Staring, M., Klein, S., Pluim, J.P.W.: A rigidity penalty term for nonrigid registration. Med. Phys. 34(11), 4098–4108 (2007)

    Article  Google Scholar 

  17. Sudret, B.: Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 93(7), 964–979 (2008)

    Article  Google Scholar 

  18. van der Voort, S., van de Water, S., Perk, Z., Heijmen, B., Lathouwers, D., Hoogeman, M.: Robustness recipes for minimax robust optimization in intensity modulated proton therapy for oropharyngeal cancer patients. Int. J. Radiat. Oncol. Biol. Phys. 95(1), 163–170 (2016)

    Article  Google Scholar 

  19. Wiener, N.: The homogeneous chaos. Am. J. Math. 60(4), 897–936 (1938)

    Article  MathSciNet  Google Scholar 

  20. Xiu, D., Karniadakis, G.E.: The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gokhan Gunay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gunay, G., van der Voort, S., Luu, M.H., Moelker, A., Klein, S. (2018). Local Image Registration Uncertainty Estimation Using Polynomial Chaos Expansions. In: Klein, S., Staring, M., Durrleman, S., Sommer, S. (eds) Biomedical Image Registration. WBIR 2018. Lecture Notes in Computer Science(), vol 10883. Springer, Cham. https://doi.org/10.1007/978-3-319-92258-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92258-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92257-7

  • Online ISBN: 978-3-319-92258-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics