[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Scoring Summaries Using Recurrent Neural Networks

  • Conference paper
  • First Online:
Intelligent Tutoring Systems (ITS 2018)

Abstract

Summarization enhances comprehension and is considered an effective strategy to promote and enhance learning and deep understanding of texts. However, summarization is seldom implemented by teachers in classrooms because the manual evaluation requires a lot of effort and time. Although the need for automated support is stringent, there are only a few shallow systems available, most of which rely on basic word/n-gram overlaps. In this paper, we introduce a hybrid model that uses state-of-the-art recurrent neural networks and textual complexity indices to score summaries. Our best model achieves over 55% accuracy for a 3-way classification that measures the degree to which the main ideas from the original text are covered by the summary . Our experiments show that the writing style, represented by the textual complexity indices, together with the semantic content grasped within the summary are the best predictors, when combined. To the best of our knowledge, this is the first work of its kind that uses RNNs for scoring and evaluating summaries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    www.cdlponline.org.

References

  1. Spirgel, A.S., Delaney, P.F.: Does writing summaries improve memory for text? Educ. Psychol. Rev. 28, 171–196 (2016)

    Article  Google Scholar 

  2. van Dijk, T.A., Kintsch, W.: Strategies of Discourse Comprehension. Academic Press, New York (1983)

    Google Scholar 

  3. Rinehart, S.D., Stahl, S.A., Erickson, L.G.: Some effects of summarization training on reading and studying. Read. Res. Q. 21, 422–438 (1986)

    Article  Google Scholar 

  4. Wade-Stein, D., Kintsch, E.: Summary Street: Interactive Computer Support for Writing (2004). http://www.tandfonline.com/doi/abs/10.1207/s1532690xci2203_3

    Article  Google Scholar 

  5. Leopold, C., Sumfleth, E., Leutner, D.: Learning with summaries: effects of representation mode and type of learning activity on comprehension and transfer. Learn. Instr. 27, 40–49 (2013)

    Article  Google Scholar 

  6. Chiu, C.-H.: Enhancing reading comprehension and summarization abilities of EFL learners through online summarization practice. J. Lang. Teach. Learn. 5(1), 79–95 (2015)

    Google Scholar 

  7. Rogevich, M.E., Perin, D.: Effects on science summarization of a reading comprehension intervention for adolescents with behavior and attention disorders. Except. Child. 74, 135–154 (2008)

    Article  Google Scholar 

  8. Perin, D., Lauterbach, M., Raufman, J., Kalamkarian, H.S.: Text-based writing of low-skilled postsecondary students: relation to comprehension, self-efficacy and teacher judgments. Read. Writ. 30, 887–915 (2017)

    Article  Google Scholar 

  9. Graham, S., Hebert, M.: Writing to read: a meta-analysis of the impact of writing and writing instruction on reading. Harv. Educ. Rev. 81, 710–744 (2011)

    Article  Google Scholar 

  10. Gil, L., Bråten, I., Vidal-Abarca, E., Strømsø, H.I.: Summary versus argument tasks when working with multiple documents: Which is better for whom? Contemp. Educ. Psychol. 35, 157–173 (2010)

    Article  Google Scholar 

  11. McNamara, D.S., O’Reilly, T., Rowe, M., Boonthum, C., Levinstein, I.: iSTART: a web-based tutor that teaches self-explanation and metacognitive reading strategies. In: Reading Comprehension Strategies: Theories, Interventions, and Technologies, pp. 397–420 (2007)

    Google Scholar 

  12. Jackson, G.T., McNamara, D.S.: Motivation and performance in a game-based intelligent tutoring system. J. Educ. Psychol. 105, 1036–1049 (2013)

    Article  Google Scholar 

  13. Snow, E.L., Jackson, G.T., McNamara, D.S.: Emergent behaviors in computer-based learning environments: computational signals of catching up. Comput. Hum. Behav. 41, 62–70 (2014)

    Article  Google Scholar 

  14. Magliano, J.P., Todaro, S., Millis, K., Wiemer-Hastings, K., Kim, H.J., McNamara, D.S.: Changes in reading strategies as a function of reading training: a comparison of live and computerized training. J. Educ. Comput. Res. 32, 185–208 (2005)

    Article  Google Scholar 

  15. O’Reilly, T., Sinclair, G.P., McNamara, D.S.: iSTART: A web-based reading strategy intervention that improves students’ science comprehension. In: IADIS International Conference Cognition and Exploratory Learning in Digital Age, pp. 173–180 (2004)

    Google Scholar 

  16. Johnson, A.M., Guerrero, T.A., Tighe, E.L., McNamara, D.S.: iSTART-ALL: confronting adult low literacy with intelligent tutoring for reading comprehension. In: André, E., Baker, R., Hu, X., Rodrigo, M.M.T., du Boulay, B. (eds.) AIED 2017. LNCS (LNAI), vol. 10331, pp. 125–136. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61425-0_11

    Chapter  Google Scholar 

  17. McNamara, D.S., Crossley, S.A., Roscoe, R.: Natural language processing in an intelligent writing strategy tutoring system. Behav. Res. Methods 45, 499–515 (2013)

    Article  Google Scholar 

  18. Li, H., Cai, Z., Graesser, A.C.: Computerized Summary Scoring: Crowdsourcing-Based Latent Semantic Analysis (2017). http://link.springer.com/10.3758/s13428-017-0982-7

  19. Mani, I.: Automatic Summarization. John Benjamins Publishing, Amsterdam (2001)

    Google Scholar 

  20. Lin, C.Y.: Rouge: a package for automatic evaluation of summaries. In: Proceedings of Workshop Text Summarization Branches Out (WAS 2004), pp. 25–26 (2004)

    Google Scholar 

  21. Louis, A., Nenkova, A.: Automatically assessing machine summary content without a gold standard. Comput. Linguist. 39, 267–300 (2013)

    Article  Google Scholar 

  22. Amigó, E., Gonzalo, J., Penas, A., Verdejo, F.: QARLA: a framework for the evaluation of text summarization systems. In: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, pp. 280–289 (2005)

    Google Scholar 

  23. Rus, V., Lintean, M., Banjade, R., Niraula, N., Stefanescu, D.: SEMILAR: the semantic similarity toolkit. Assoc. Comput. Linguist. 2013, 163–168 (2013)

    Google Scholar 

  24. Elman, J.L.: Finding structure in time. Cogn. Sci. 14, 179–211 (1990)

    Article  Google Scholar 

  25. Spärck Jones, K., Galliers, J.R.: Evaluating Natural Language Processing Systems, An Analysis and Review. Springer Science & Business Media, Heidelberg (1996). https://doi.org/10.1007/BFb0027470

    Book  Google Scholar 

  26. Steinberger, J., Jezek, K.: Evaluation measures for text summarization. Comput. Inf. 28, 1001–1025 (2009)

    MATH  Google Scholar 

  27. Jing, H., Barzilay, R., McKeown, K.R., Elhadad, M.: Summarization evaluation methods: experiments and analysis. In: AAAI Symposium on Intelligent Summarization, pp. 51–59 (1998)

    Google Scholar 

  28. Edmundson, H.P.: New methods in automatic extracting. J. ACM 16, 264–285 (1969)

    Article  Google Scholar 

  29. Brandow, R., Mitze, K., Rau, L.F.: Automatic condensation of electronic publications by sentence selection. Inf. Process. Manag. 31, 675–685 (1995)

    Article  Google Scholar 

  30. Mani, I., House, D., Klein, G., Hirschman, L., Firmin, T., Sundheim, B.: The TIPSTER SUMMAC text summarization evaluation. In: 9th Conference on EACL, p. 77. Association for Computational Linguistics, Morristown (1999)

    Google Scholar 

  31. Over, P., Yen, J.: An Introduction to DUC-2003 Intrinsic Evaluation of Generic News Text Summarization Systems (2003). http://www-nlpir.nist.gov/projects/duc/pubs/2003slides/duc2003intro.pdf

  32. Donaway, R.L., Drummey, K.W., Mather, L.A.: A comparison of rankings produced by summarization evaluation measures. In: NAACL-ANLP 2000 Workshop on Automatic summarization, pp. 69–78. Association for Computational Linguistics (2000)

    Google Scholar 

  33. Lin, C.-Y., Hovy, E.: Manual and automatic evaluation of summaries. In: Proceedings of ACL02 Workshop on Automatic Summarization, vol. 4, pp. 45–51 (2002)

    Google Scholar 

  34. Rath, G.J., Resnick, A., Savage, T.: The formation of abstracts by the selection of sentences. J. Am. Soc. Inf. Sci. Technol. 12, 139–141 (1961)

    Article  Google Scholar 

  35. van Halteren, H., Teufel, S.: Examining the consensus between human summaries. In: Proceedings of the HLT-NAACL 2003 on Text Summarization Workshop, pp. 57–64. Association for Computational Linguistics, Morristown (2003)

    Google Scholar 

  36. Lin, C.-Y., Hovy, E.: Automatic evaluation of summaries using N-gram co-occurrence statistics. In: Proceedings of 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology, NAACL 2003, pp. 71–78 (2003)

    Google Scholar 

  37. Papineni, K., Roukos, S., Ward, T., Zhu, W.-J.: BLEU: a method for automatic evaluation of machine translation. In: ACL 2002, p. 311. Association for Computational Linguistics, Morristown (2001)

    Google Scholar 

  38. Hovy, E., Lin, C.-Y., Zhou, L., Fukumoto, J.: Automated summarization evaluation with basic elements. In: Proceedings of 5th International Conference on Language Resources and Evaluation, pp. 899–902 (2006)

    Google Scholar 

  39. Saggion, H., Radev, D., Teufel, S., Lam, W.: Meta-evaluation of summaries in a cross-lingual environment using content-based metrics. In: Proceedings of International Conference on Computational Linguistics, pp. 849–855 (2002)

    Google Scholar 

  40. Nenkova, A., Passonneau, R.: Evaluating content selection in summarization: the pyramid method. In: Proceedings of HLT-NAACL 2004, pp. 145–152 (2004)

    Google Scholar 

  41. Kanerva, P., Kristofersson, J., Holst, A.: Random indexing of text samples for latent semantic analysis. In: Proceedings of 22nd Annual Conference of the Cognitive Science Society, vol. 1036, pp. 16429–16429 (2000)

    Google Scholar 

  42. Sahlgren, M.: Vector-based semantic analysis: representing word meaning based on random labels. In: ESSLI Workshop on Semantic Knowledge Acquistion and Categorization (2002)

    Google Scholar 

  43. Lin, C.-Y., Cao, G., Gao, J., Nie, J.-Y.: An information-theoretic approach to automatic evaluation of summaries. In: Proceedings of the Main Conference on Human Language Technology Conference of the North American Chapter of ACL, pp. 463–470. Association for Computational Linguistics, Morristown (2006)

    Google Scholar 

  44. Bhaskar, P., Pakray, P.: Automatic evaluation of summary using textual entailment. In: RANLP 2013, pp. 30–37 (2013)

    Google Scholar 

  45. De, A., Kopparapu, S.K.: An unsupervised approach to automated selection of good essays. In: 2011 IEEE Recent Advances in Intelligent Computational Systems, RAICS 2011, pp. 662–666. IEEE (2011)

    Google Scholar 

  46. Ellouze, S., Jaoua, M., Belguith, L.H.: Machine learning approach to evaluate multilingual summaries. In: Proceedings of the MultiLing 2017 Workshop on Summarization and Summary Evaluation Across Source Types and Genres, pp. 47–54 (2017)

    Google Scholar 

  47. Perez-breva, L., Yoshimi, O.: Model Selection in Summary Evaluation, pp. 0–12 (2002)

    Google Scholar 

  48. Hochreiter, S., Urgen Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)

    Article  Google Scholar 

  49. Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: EMNLP 2014, pp. 1724–1734 (2014)

    Google Scholar 

  50. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5, 157–166 (1994)

    Article  Google Scholar 

  51. Conneau, A., Kiela, D., Schwenk, H., Barrault, L., Bordes, A.: Supervised learning of universal sentence representations from natural language inference data. In: EMNLP 2017 (2017)

    Google Scholar 

  52. Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 18, 602–610 (2005)

    Article  Google Scholar 

  53. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word representation. In: Proceedings of 2014 Conference on Empirical Methods in Natural Language Processing, pp. 1532–1543 (2014)

    Google Scholar 

  54. Dascalu, M., Gutu, G., Ruseti, S., Paraschiv, I.C., Dessus, P., McNamara, D.S., Crossley, S.A., Trausan-Matu, S.: ReaderBench: a multi-lingual framework for analyzing text complexity. In: EC-TEL 2017, pp. 495–499 (2017)

    Chapter  Google Scholar 

  55. Santos, C. dos, Tan, M., Xiang, B., Zhou, B.: Attentive Pooling Networks. CoRR, abs/1602.03609, no. 2, p. 4 (2016)

    Google Scholar 

Download references

Acknowledgment

This research was partially supported by the README project “Interactive and Innovative application for evaluating the readability of texts in Romanian Language and for improving users’ writing styles”, contract no. 114/15.09.2017, MySMIS 2014 code 119286, the 644187 EC H2020 RAGE project, the FP7 2008-212578 LTfLL project, the Department of Education, Institute of Education Sciences - Grant R305A130124, as well as the Department of Defense, Office of Naval Research - Grants N00014140343 and N000141712300.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai Dascalu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ruseti, S. et al. (2018). Scoring Summaries Using Recurrent Neural Networks. In: Nkambou, R., Azevedo, R., Vassileva, J. (eds) Intelligent Tutoring Systems. ITS 2018. Lecture Notes in Computer Science(), vol 10858. Springer, Cham. https://doi.org/10.1007/978-3-319-91464-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91464-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91463-3

  • Online ISBN: 978-3-319-91464-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics