[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Boost Multi-class sLDA Model for Text Classification

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10841))

Included in the following conference series:

Abstract

Text classification is an important problem in Natural Language Processing. It differs from many other classification tasks by the large number of features that have to be used during training. One of the solution for reducing dimensionality of feature space, is the usage of Latent Dirichlet Allocation. After this step, the smaller problem can be solved using standard classifiers. In [11], authors propose combination of LDA and Softmax classifier called Multi-class sLDA, that does both tasks simultaneously. However, to use the method, we have to choose a number of topics - hyperparameter of the model. This step requires analysis and human supervision. In this paper, we propose Boost Multi-class sLDAmodel, based on ensemble of many Multi-class sLDA models, that does not require the choice of topic number. Moreover, our model achieves significantly better classification accuracy, than Multi-class sLDA for any number of topics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B (Methodol.) 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  2. Freund, Y., Schapire, R.: A decision-theoretic generalization of online learning and an application to boosting. J. Comput. Syst. Sci. 55, 119–139 (1997)

    Article  Google Scholar 

  3. Rubin, D.: Bayesianly justifiable and relevant frequency calculations for the applied statistician. Ann. Stat. 12(4), 1151–1172 (1984)

    Article  MathSciNet  Google Scholar 

  4. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, New York (2001). https://doi.org/10.1007/978-0-387-84858-7

    Book  MATH  Google Scholar 

  5. Blei, D., Ng, A., Jordan, M.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  6. Griffiths, T., Steyvers, M.: Finding scientific topics. Proc. Natl. Acad. Sci. 101, 5228–5235 (2004). https://doi.org/10.1073/pnas.0307752101

    Article  Google Scholar 

  7. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer, New York (2006)

    MATH  Google Scholar 

  8. Teh, Y.W., Jordan, M.I., Beal, M.J., Blei, D.M.: Hierarchical Dirichlet processes. J. Am. Stat. Assoc. 101(476), 1566–1581 (2006)

    Article  MathSciNet  Google Scholar 

  9. Mcauliffe, J.D., Blei, D.M.: Supervised topic models. In: Advances in Neural Information Processing Systems (2008)

    Google Scholar 

  10. Cao, J., Xia, T., Li, J., Zhang, Y., Tang, S.: A density-based method for adaptive LDA model selection. Neurocomputing 72(7–9), 1775–1781 (2008). 16th European Symposium on Artificial Neural Networks

    Google Scholar 

  11. Wang, C., Blei, D., Fei-Fei, L.: Simultaneous image classification and annotation. In: Computer Vision and Pattern Recognition (2009)

    Google Scholar 

  12. Arun, R., Suresh, V., Veni Madhavan, C.E., Narasimha Murthy, M.N.: On finding the natural number of topics with latent Dirichlet allocation: some observations. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010. LNCS (LNAI), vol. 6118, pp. 391–402. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13657-3_43

    Chapter  Google Scholar 

  13. Mimno, D., Blei, D.: Bayesian checking for topic models. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics (2011)

    Google Scholar 

  14. Almeida, T.A., Gomez Hidalgo, J.M., Yamakami, A.: Contributions to the study of SMS spam filtering: new collection and results. In: Proceedings of the 2011 ACM Symposium on Document Engineering (DOCENG 2011), Mountain View, CA, USA (2011)

    Google Scholar 

  15. Deveaud, R., Sanjuan, E., Bellot, P.: Accurate and effective latent concept modeling for ad hoc information retrieval. Revue des Sciences et Technologies de l’Information - Série Document Numérique, Lavoisier, 61–84 (2014)

    Google Scholar 

  16. Chang, J.: LDA: Collapsed Gibbs Sampling Methods for Topic Models. R package version 1.4.2 (2015). https://CRAN.R-project.org/package=lda

  17. Blei, D., Kucukelbir, A., McAuliffe, J.: Variational inference: a review for statisticians. J. Am. Stat. Assoc. 112(518), 859–877 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej Jankowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jankowski, M. (2018). Boost Multi-class sLDA Model for Text Classification. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2018. Lecture Notes in Computer Science(), vol 10841. Springer, Cham. https://doi.org/10.1007/978-3-319-91253-0_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91253-0_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91252-3

  • Online ISBN: 978-3-319-91253-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics