Abstract
We discuss incomplete data sets with two interpretations of missing attribute values, lost values and “do not care” conditions. For data mining we use two probabilistic approximations, concept and global. Concept probabilistic approximations are well known while global probabilistic approximations are introduced in this paper. The rationale for introducing global probabilistic approximations is a common opinion of the rough set community that global probabilistic approximations, as closer to the approximated concept, should be more successful. Surprisingly, results of our experiments show that the error rate evaluated by ten-fold cross validation is smaller for concept probabilistic approximations than for global probabilistic approximations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Clark, P.G., Grzymala-Busse, J.W.: Experiments on probabilistic approximations. In: Proceedings of the 2011 IEEE International Conference on Granular Computing, pp. 144–149 (2011)
Clark, P.G., Grzymala-Busse, J.W.: Experiments on rule induction from incomplete data using three probabilistic approximations. In: Proceedings of the 2012 IEEE International Conference on Granular Computing, pp. 90–95 (2012)
Clark, P.G., Grzymala-Busse, J.W.: An experimental comparison of three interpretations of missing attribute values using probabilistic approximations. In: Proceedings of the 14-th International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing, pp. 77–86 (2013)
Clark, P.G., Grzymala-Busse, J.W., Rzasa, W.: Mining incomplete data with singleton, subset and concept approximations. Inf. Sci. 280, 368–384 (2014)
Grzymala-Busse, J.W.: MLEM2: a new algorithm for rule induction from imperfect data. In: Proceedings of the 9th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, pp. 243–250 (2002)
Grzymala-Busse, J.W.: Rough set strategies to data with missing attribute values. In: Notes of the Workshop on Foundations and New Directions of Data Mining, in Conjunction with the Third International Conference on Data Mining, pp. 56–63 (2003)
Grzymala-Busse, J.W.: Three approaches to missing attribute values–a rough set perspective. In: Proceedings of the Workshop on Foundation of Data Mining, in Conjunction with the Fourth IEEE International Conference on Data Mining, pp. 55–62 (2004)
Grzymala-Busse, J.W.: Generalized parameterized approximations. In: Proceedings of the 6-th International Conference on Rough Sets and Knowledge Technology, pp. 136–145 (2011)
Grzymala-Busse, J.W., Clark, P.G., Kuehnhausen, M.: Generalized probabilistic approximations of incomplete data. Int. J. Approximate Reasoning 132, 180–196 (2014)
Grzymala-Busse, J.W., Mroczek, T.: Definability in mining incomplete data. In: Proceedings of the 20-th International Conference on Knowledge Based and Intelligent Information and Engineering Systems, pp. 179–186 (2016)
Grzymala-Busse, J.W., Rzasa, W.: Local and global approximations for incomplete data. In: Proceedings of the Fifth International Conference on Rough Sets and Current Trends in Computing, pp. 244–253 (2006)
Grzymala-Busse, J.W., Rzasa, W.: Local and global approximations for incomplete data. Trans. Rough Sets 8, 21–34 (2008)
Grzymala-Busse, J.W., Ziarko, W.: Data mining based on rough sets. In: Wang, J. (ed.) Data Mining: Opportunities and Challenges, pp. 142–173. Idea Group Publ., Hershey (2003)
Pawlak, Z., Skowron, A.: Rough sets: some extensions. Inf. Sci. 177, 28–40 (2007)
Pawlak, Z., Wong, S.K.M., Ziarko, W.: Rough sets: probabilistic versus deterministic approach. Int. J. Man Mach. Stud. 29, 81–95 (1988)
Ślȩzak, D., Ziarko, W.: The investigation of the Bayesian rough set model. Int. J. Approximate Reasoning 40, 81–91 (2005)
Wong, S.K.M., Ziarko, W.: INFER–an adaptive decision support system based on the probabilistic approximate classification. In: Proceedings of the 6-th International Workshop on Expert Systems and their Applications, pp. 713–726 (1986)
Yao, Y.Y.: Probabilistic rough set approximations. Int. J. Approximate Reasoning 49, 255–271 (2008)
Yao, Y.Y., Wong, S.K.M.: A decision theoretic framework for approximate concepts. Int. J. Man Mach. Stud. 37, 793–809 (1992)
Ziarko, W.: Variable precision rough set model. J. Comput. Syst. Sci. 46(1), 39–59 (1993)
Ziarko, W.: Probabilistic approach to rough sets. Int. J. Approximate Reasoning 49, 272–284 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Clark, P.G., Gao, C., Grzymala-Busse, J.W., Mroczek, T., Niemiec, R. (2018). A Comparison of Concept and Global Probabilistic Approximations Based on Mining Incomplete Data. In: Damaševičius, R., Vasiljevienė, G. (eds) Information and Software Technologies. ICIST 2018. Communications in Computer and Information Science, vol 920. Springer, Cham. https://doi.org/10.1007/978-3-319-99972-2_26
Download citation
DOI: https://doi.org/10.1007/978-3-319-99972-2_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-99971-5
Online ISBN: 978-3-319-99972-2
eBook Packages: Computer ScienceComputer Science (R0)