[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Network Electronic Devices Authentication by Internal Electrical Noise

  • Conference paper
  • First Online:
Computer Information Systems and Industrial Management (CISIM 2018)

Abstract

The article is devoted to dynamic authentication method of electronic network devices with built-in analog-to-digital converters (ADCs) based on authentication templates. The following results were obtained: the authentication of each electronic device can be carried out uniquely by its internal electrical noise (like biometric authentication of a person). Uniqueness of authentication is provided by the invariants of the noise signal such as the shape of the graph of the autocorrelation function of noise and the set of resonance frequencies of the device. The electronic device authentication template is obtained from the sequence of values of the autocorrelation function of the noise. It consists from the bit template and the amplitude template. The technique of obtaining an authentication template is presented. The required duration of the noise signal is 0.5 s for reliable authentication at a sampling frequency of 44.1 kHz. The results of authentication of several computers are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hasse, J., Gloe, T., Beck, M.: Forensic Identification of GSM Mobile Phones. http://www.dence.de/publications/Hasse13_GSMMobilePhoneIdentification.pdf. Accessed 19 Mar 2018

  2. Toshiba Develops New Chip Authentication Technology Using Transistor Noise. http://www.toshiba.co.jp/rdc/rd/detail_e/e1506_03.html. Accessed 19 Mar 2018

  3. Laput, G., Yang, C., Xiao, R., Sample, A., Harrison, C.: Em-sense: touch recognition of uninstrumented, electrical and electromechanical objects. In: 28th Annual ACM Symposium on User Interface Software Technology, pp. 157–166. UIST, New York (2015)

    Google Scholar 

  4. Karapanos, N., Marforio, C., Soriente, C., Capkun, S.: Sound-proof: usable two-factor authentication based on ambient sound. In: 24th USENIX Security Symposium, pp. 483–498. USENIX, Washington (2015)

    Google Scholar 

  5. Yang, C., Sample, A.P.: EM-ID: tag-less identification of electrical devices via electromagnetic emissions (2016). http://ieeexplore.ieee.org/document/7488014/

  6. Chumachenko, A., Rublev, D., Makarevich, O., Fedorov, V.: Identification of digital microphones by the imperfections of the recording path. Issue SFU Tech. Sci. Thematic Issue Inf. Secur. Taganrog 8, 84–92 (2007)

    Google Scholar 

  7. Rybalsky, O., Zhuravel, V., Solovyev, V.: Signalogramm structure and universality of the fractal approach to the development of the phonoscope assessment toolkit. Inf. Math. Methods Simul. 3(3), 225–232 (2013)

    Google Scholar 

  8. Nyemkova, E., Chaplyha, V., Shandra, Z.: Technique of measuring of identification parameters of audio recording device. In: The 18th International Conference on Information Technology for Practice, Ostrava, pp. 209–218 (2015)

    Google Scholar 

  9. Nyemkova, E., Chaplyha, V., Shandra, Z., Kochan, R., Gancarczyk, T., Shaikhanova, A.: Computational device authentication via fluctuations of analog-to-digital converter. In: 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (2017)

    Google Scholar 

  10. Nicolis, G., Prigogine, I.: Self-Organization in Nonequilibrium Systems. Wiley-Interscience, New York (1977)

    MATH  Google Scholar 

  11. Ebeling, W.: Stochastische Theorie der Nichtlinearen Irreversiblen Prozesse. W. Pieck U.P, Rostock (1977)

    Google Scholar 

  12. Mehrotra, A.: Simulation and modelling techniques for noise in radio frequency integrated circuits. University of California at Berkeley (1999)

    Google Scholar 

  13. Schuster, H.G., Just, W.: Deterministic Chaos. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2005)

    Book  Google Scholar 

  14. Rabinovich, M.I., Afraimovich, V.S.: Stochastic auto oscillations and turbulence. Phys. Usp. 125, 123–168 (1978)

    Article  Google Scholar 

  15. Lichtenberg, A., Lieberman, M.: Regular and Chaotic Dynamics. Springer, New York (1992). https://doi.org/10.1007/978-1-4757-2184-3

    Book  MATH  Google Scholar 

  16. Loskutov, A.: Lectures time series analysis. http://chaos.phys.msu.ru/loskutov/PDF/Lectures_time_series_analysis.pdf. Accessed 19 Mar 2018

  17. Kuzovlev, Y.: Why nature needs 1/f noise. Phys. Usp. 58(7), 719–729 (2015)

    Article  Google Scholar 

  18. Dyvak M., Padletska N., Pukas, A., Kozak O.: Identification the recurrent laryngeal nerve by the autocorrelation function of signal as reaction on the stimulation of tissues in surgical wound. In: Proceedings of the XIIth International Conference CADSM 2013, Lviv, Ukraine, pp. 89–92 (2013)

    Google Scholar 

  19. Nikulchev, E.B.: Identification of Dynamic Systems Based on Symmetry of Reconstructed Attractors. Moscow State University of Printing Publishing, Moscow (2010)

    Google Scholar 

  20. Petrovich, V.N.: Identification of parameters of mathematical models of dynamic control system. Artif. Intell. 4, 343–349 (2011)

    Google Scholar 

  21. Patra, J.C.: Identification of nonlinear dynamic systems using functional link artificial neural networks. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 29(2), 254–262 (1999)

    Article  Google Scholar 

  22. Patra, J.C., Kot, A.C.: Nonlinear dynamic system identification using Chebyshev functional link artificial neural networks. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 32(4), 505–511 (2002)

    Article  Google Scholar 

  23. OscilloMeter 7.30 - Multichannel Real-Time Spectrum Analyzer. http://soft-arhiv.com/load/47-1-0-95

  24. Max, J.: Methods and Techniques for Signal Processing and Applications to Physical Measurements - Principles and Apparatus for Real-Time Processing. Masson, Paris (1980)

    Google Scholar 

  25. Bendat, J.S., Piersol, A.G.: Random Data: Analysis and Measurement Procedures. Wiley, New York (2010)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Łukasz Więcław .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nyemkova, E., Shandra, Z., Kłos-Witkowska, A., Więcław, Ł. (2018). Network Electronic Devices Authentication by Internal Electrical Noise. In: Saeed, K., Homenda, W. (eds) Computer Information Systems and Industrial Management. CISIM 2018. Lecture Notes in Computer Science(), vol 11127. Springer, Cham. https://doi.org/10.1007/978-3-319-99954-8_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99954-8_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99953-1

  • Online ISBN: 978-3-319-99954-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics