Abstract
Drift detection in changing environments is a key factor for those active adaptive methods which require trigger mechanisms for drift adaptation. Most approaches are relied on a base learner that provides accuracies or error rates to be analyzed by an algorithm. In this work we propose the use of evolving spiking neural networks as a new form of drift detection, which resorts to the own architectural changes of this particular class of models to estimate the drift location without requiring any external base learner. By virtue of its inherent simplicity and lower computational cost, this embedded approach can be suitable for its adoption in online learning scenarios with severe resource constraints. Experiments with synthetic datasets show that the proposed technique is very competitive when compared to other drift detection techniques.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Zhou, Z.H., Chawla, N.V., Jin, Y., Williams, G.J.: Big data opportunities and challenges: discussions from data analytics perspectives. IEEE Comput. Intell. Mag. 9(4), 62–74 (2014)
Alippi, C.: Intelligence for Embedded Systems. Springer, Heidelberg (2014)
Domingos, P., Hulten, G.: A general framework for mining massive data streams. J. Comput. Graph. Stat. 12(4), 945–949 (2003)
Ditzler, G., Roveri, M., Alippi, C., Polikar, R.: Learning in nonstationary environments: a survey. IEEE Comput. Intell. Mag. 10(4), 12–25 (2015)
Khamassi, I., Sayed-Mouchaweh, M., Hammami, M., Ghédira, K.: Discussion and review on evolving data streams and concept drift adapting. Evolving Syst. 9(1), 1–23 (2018)
Gonçalves Jr., P.M., de Carvalho Santos, S.G., Barros, R.S., Vieira, D.C.: A comparative study on concept drift detectors. Expert Syst. Appl. 41(18), 8144–8156 (2014)
Demšar, J., Bosnić, Z.: Detecting concept drift in data streams using model explanation. Expert Syst. Appl. 92, 546–559 (2018)
Minku, L.L., Yao, X.: DDD: a new ensemble approach for dealing with concept drift. IEEE Trans. Knowl. Data Eng. 24(4), 619–633 (2012)
Gonçalves Jr., P.M., De Barros, R.S.M.: RCD: a recurring concept drift framework. Pattern Recogn. Lett. 34(9), 1018–1025 (2013)
Dehghan, M., Beigy, H., ZareMoodi, P.: A novel concept drift detection method in data streams using ensemble classifiers. Intell. Data Anal. 20(6), 1329–1350 (2016)
Brzezinski, D., Stefanowski, J.: Ensemble diversity in evolving data streams. In: International Conference on Discovery Science, pp. 229–244. Springer, Heidelberg (2016)
Lobo, J.L., Del Ser, J., Bilbao, M.N., Perfecto, C., Salcedo-Sanz, S.: DRED: an evolutionary diversity generation method for concept drift adaptation in online learning environments. Appl. Soft Comput. 68, 693–709 (2017)
Gerstner, W., Kistler, W.M.: Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge University Press, Cambridge (2002)
Soltic, S., Kasabov, N.: Knowledge extraction from evolving spiking neural networks with rank order population coding. Int. J. Neural Syst. 20(06), 437–445 (2010)
Schliebs, S., Kasabov, N.: Evolving spiking neural network: a survey. Evolving Syst. 4(2), 87–98 (2013)
Gama, J., Zliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. (CSUR) 46(4), 44 (2014)
Wald, A.: Sequential Analysis. Courier Corporation, New York City (1973)
Page, E.S.: Continuous inspection schemes. Biometrika 41(1/2), 100–115 (1954)
Ross, G.J., Adams, N.M., Tasoulis, D.K., Hand, D.J.: Exponentially weighted moving average charts for detecting concept drift. Pattern Recogn. Lett. 33(2), 191–198 (2012)
Bifet, A., Gavalda, R.: Learning from time-changing data with adaptive windowing. In: Proceedings of the 2007 SIAM International Conference on Data Mining, SIAM, pp. 443–448 (2007)
Minku, L.L.: Online ensemble learning in the presence of concept drift. Ph.D. thesis, University of Birmingham (2011)
Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In: Brazilian symposium on artificial intelligence, pp. 286–295. Springer, Heidelberg (2004)
Baena-García, M., del Campo-Ávila, J., Fidalgo, R., Bifet, A., Gavaldà, R., Morales-Bueno, R.: Early drift detection method. In: Fourth International Workshop on Knowledge Discovery from Data Streams (2006)
Bach, S.H., Maloof, M.A.: Paired learners for concept drift. In: Eighth IEEE International Conference on Data Mining, ICDM 2008, pp. 23–32. IEEE (2008)
Sobhani, P., Beigy, H.: New drift detection method for data streams. In: Adaptive and intelligent systems, pp. 88–97. Springer, Heidelberg (2011)
Nishida, K., Yamauchi, K.: Detecting concept drift using statistical testing. In: International Conference on Discovery Science, pp. 264–269. Springer, Heidelberg (2007)
Barros, R.S., Cabral, D.R., Gonçalves Jr., P.M., Santos, S.G.: RDDM: reactive drift detection method. Expert Syst. Appl. 90, 344–355 (2017)
Wang, J., Belatreche, A., Maguire, L., Mcginnity, T.M.: An online supervised learning method for spiking neural networks with adaptive structure. Neurocomputing 144, 526–536 (2014)
Wang, J., Belatreche, A., Maguire, L., McGinnity, M.: Online versus offline learning for spiking neural networks: a review and new strategies. In: 2010 IEEE 9th International Conference on Cybernetic Intelligent Systems (CIS), pp. 1–6. IEEE (2010)
Wang, J., Belatreche, A., Maguire, L.P., McGinnity, T.M.: SpikeTemp: an enhanced rank-order-based learning approach for spiking neural networks with adaptive structure. IEEE Trans. Neural Netw. Learn. Syst. 28(1), 30–43 (2017)
Kasabov, N.K.: Evolving Connectionist Systems: The Knowledge Engineering Approach. Springer, Heidelberg (2007)
Thorpe, S.J., Gautrais, J.: Rapid visual processing using spike asynchrony. In: Advances in Neural Information Processing Systems, pp. 901–907 (1997)
Bohte, S.M., Kok, J.N., La Poutre, H.: Error-backpropagation in temporally encoded networks of spiking neurons. Neurocomputing 48(1–4), 17–37 (2002)
Thorpe, S., Gautrais, J.: Rank order coding. In: Computational Neuroscience, pp. 113–118. Springer, Heidelberg (1998)
Minku, L.L., White, A.P., Yao, X.: The impact of diversity on online ensemble learning in the presence of concept drift. IEEE Trans. Knowl. Data Eng. 22(5), 730–742 (2010)
Frías-Blanco, I., del Campo-Ávila, J., Ramos-Jiménez, G., Morales-Bueno, R., Ortiz-Díaz, A., Caballero-Mota, Y.: Online and non-parametric drift detection methods based on hoeffdings bounds. IEEE Trans. Knowl. Data Eng. 27(3), 810–823 (2015)
Gao, J., Ding, B., Fan, W., Han, J., Philip, S.Y.: Classifying data streams with skewed class distributions and concept drifts. IEEE Internet Comput. 12(6) (2008)
Pears, R., Sakthithasan, S., Koh, Y.S.: Detecting concept change in dynamic data streams. Mach. Learn. 97(3), 259–293 (2014)
Acknowledgements
This work was supported by the EU project Pacific Atlantic Network for Technical Higher Education and Research - PANTHER (grant number 2013-5659/004-001 EMA2), and by the Basque Government through the EMAITEK program.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Lobo, J.L., Del Ser, J., Laña, I., Bilbao, M.N., Kasabov, N. (2018). Drift Detection over Non-stationary Data Streams Using Evolving Spiking Neural Networks. In: Del Ser, J., Osaba, E., Bilbao, M., Sanchez-Medina, J., Vecchio, M., Yang, XS. (eds) Intelligent Distributed Computing XII. IDC 2018. Studies in Computational Intelligence, vol 798. Springer, Cham. https://doi.org/10.1007/978-3-319-99626-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-99626-4_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-99625-7
Online ISBN: 978-3-319-99626-4
eBook Packages: EngineeringEngineering (R0)