[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Phoneme Duration Prediction for Kazakh Language

  • Conference paper
  • First Online:
Speech and Computer (SPECOM 2018)

Abstract

Our research team set the goal of creating a modern speech synthesis system for the Kazakh language. One of the most important components of such system is the phoneme duration prediction. In this article, we present our work on the creation of such a classifier. We managed to develop a detector based on deep neural network, using for this purpose a minimum number of input linguistic and phonetic parameters. Based on the learning results, the proposed detector predicts the duration of phonemes on test data with a deviation of 20–25 ms on average.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arman K., Rybin, S.V., Matveev, Y.N., Kaziyeva, N., Burambayeva, N.,: Modeling pause for the synthesis of Kazakh speech. In: Proceedings of the Fourth International Conference on Engineering & MIS 2018 (ICEMIS 2018), Article 1, 4 p. ACM, New York, NY, USA, (2018). https://doi.org/10.1145/3234698.3234699

  2. Chen, B., Bian, T., Yu, K.: Discrete duration model for speech synthesis. In: 18th Annual Conference of the International Speech Communication Association, Interspeech 2017, Stockholm, Sweden, 20–24 August 2017, pp. 789–793 (2017)

    Google Scholar 

  3. Fernandez, R., Rendel, A., Ramabhadran, B., Hoory, R.: Prosody contour prediction with long short-term memory, bi-directional, deep recurrent neural networks. In: 15th Annual Conference of the International Speech Communication Association, INTERSPEECH 2014, Singapore, 14–18 September 2014, pp. 2268–2272 (2014)

    Google Scholar 

  4. Foltz, P.W.: Latent semantic analysis for text-based research. Behav. Res. Methods Instrum. Comput. 28(2), 197–202 (1996). https://doi.org/10.3758/BF03204765

    Article  Google Scholar 

  5. Henter, G.E., Ronanki, S., Watts, O., Wester, M., Wu, Z., King, S.: Robust TTS duration modelling using DNNs. In: Proceedings of the ICASSP, vol. 41. IEEE, Shanghai, March 2016. http://homepages.inf.ed.ac.uk/ghenter/pubs/henter2016robust.pdf

  6. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  7. Kaliyev, A., Rybin, S.V., Matveev, Y.: The pausing method based on brown clustering and word embedding. In: Karpov, A., Potapova, R., Mporas, I. (eds.) SPECOM 2017. LNCS (LNAI), vol. 10458, pp. 741–747. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66429-3_74

    Chapter  Google Scholar 

  8. Karpov, A., Verkhodanova, V.: Speech technologies for under-resourced languages of the world 2015, pp. 117–135 (2015)

    Google Scholar 

  9. Khomitsevich, O., Mendelev, V., Tomashenko, N., Rybin, S., Medennikov, I., Kudubayeva, S.: A bilingual Kazakh-Russian system for automatic speech recognition and synthesis. In: Ronzhin, A., Potapova, R., Fakotakis, N. (eds.) SPECOM 2015. LNCS (LNAI), vol. 9319, pp. 25–33. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23132-7_3

    Chapter  Google Scholar 

  10. Koo, T., Carreras, X., Collins, M.: Simple semi-supervised dependency parsing. In: Proceedings of ACL 2008: HLT, pp. 595–603. Association for Computational Linguistics, Columbus, June 2008. http://www.aclweb.org/anthology/P/P08/P08-1068

  11. Miller, S., Guinness, J., Zamanian, A.: Name tagging with word clusters and discriminative training. In: Susan Dumais, D.M., Roukos, S. (eds.) HLT-NAACL 2004: Main Proceedings, pp. 337–342. Association for Computational Linguistics, Boston, 2–7 May 2004. http://www.aclweb.org/anthology/N04-1043

  12. Ronanki, S., Watts, O., King, S., Henter, G.E.: Median-based generation of synthetic speech durations using a non-parametric approach. CoRR abs/1608.06134 (2016). http://arxiv.org/abs/1608.06134

  13. Zen, H., Sak, H.: Unidirectional long short-term memory recurrent neural network with recurrent output layer for low-latency speech synthesis. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 4470–4474 (2015)

    Google Scholar 

  14. Zen, H., Senior, A.W.: Deep mixture density networks for acoustic modeling in statistical parametric speech synthesis. In: IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2014, Florence, Italy, 4–9 May 2014, pp. 3844–3848 (2014). https://doi.org/10.1109/ICASSP.2014.6854321

Download references

Acknowledgments

This work was partially financially supported by the Government of the Russian Federation (Grant 08-08) and by the initial funding from the ITMO University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arman Kaliyev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kaliyev, A., Rybin, S.V., Matveev, Y.N. (2018). Phoneme Duration Prediction for Kazakh Language. In: Karpov, A., Jokisch, O., Potapova, R. (eds) Speech and Computer. SPECOM 2018. Lecture Notes in Computer Science(), vol 11096. Springer, Cham. https://doi.org/10.1007/978-3-319-99579-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99579-3_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99578-6

  • Online ISBN: 978-3-319-99579-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics