[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Feature Selection Based on Logistic Regression for 2-Class Classification of Multidimensional Molecular Data

  • Conference paper
  • First Online:
Artificial Intelligence: Methodology, Systems, and Applications (AIMSA 2018)

Abstract

This paper describes a classification system which uses feature selection method based on logistic regression algorithm. As a feature elimination criterion the variance inflation factor of the statistical logistic regression model is used. The experimental results show that this method can be successfully applied for feature selection in classification problem of multidimensional microarray data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Student, S., Fujarewicz, K.: Stable feature selection and classification algorithms for multiclass microarray data. Biol. Direct 7(33), 1–20 (2012)

    Google Scholar 

  2. Fujarewicz, K., et al.: Large-scale data classification system based on Galaxy Server and protected from information leak. In: Nguyen, N.T., Tojo, S., Nguyen, L.M., Trawiński, B. (eds.) ACIIDS 2017. LNCS (LNAI), vol. 10192, pp. 765–773. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54430-4_73

    Chapter  Google Scholar 

  3. Pojda, K., Jakubczak, M., Student, S., Świerniak, A., Fujarewicz, K.: Comparing different data fusion strategies for cancer classification. In: Rocha, Á., Guarda, T. (eds.) ICITS 2018. AISC, vol. 721, pp. 417–426. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73450-7_40

    Chapter  Google Scholar 

  4. Boser, B.E., Guyon, I.M., Vapnik, V.: A training algorithm for optimal margin classifiers. In: Fifth Annual Workshop on Computational Learning Theory, Pittsburgh (1992)

    Google Scholar 

  5. Brown, M.P.S., et al.: Knowledge based analysis of microarray gene expression data by using support vector machines. Proc. Natl. Acad. Sci. 97(1), 262–267 (2000)

    Article  Google Scholar 

  6. Vu, D.H., Muttaqi, K.M., Agalgaonkar, A.P.: A variance inflation factor and backward elimination based robust regression model for forecasting monthly electricity demand using climatic variables. Appl. Energy 140, 385–394 (2015)

    Article  Google Scholar 

  7. Van den Bent, M.J.: Interobserver variation of the histopathological diagnosis in clinical trials on glioma: a clinicians perspective. Acta Neuropathol. 120(3), 297–304 (2010)

    Article  Google Scholar 

  8. O’Brien, R.: A caution regarding rules of thumb for Variance Inflation Factors. Qual. Quant. 41, 673–690 (2007)

    Article  Google Scholar 

  9. Clough, E., Barrett, T.: The gene expression omnibus database. Methods Mol. Biol. 1418, 93–110 (2016)

    Article  Google Scholar 

  10. Ferrari, F., et al.: Novel definition files for human GeneChips based on GeneAnnot. BMC Bioinform. 8, 446 (2007)

    Article  Google Scholar 

  11. Nutt, C.L., et al.: Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Res. 63(7), 1602–1607 (2003)

    Google Scholar 

Download references

Acknowledgments

This research was supported by Polish National Centre for Research and Development under grant No. NCBR Strategmed2/267398/4/NCBR/2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Student .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Student, S., Płuciennik, A., Jakubczak, M., Fujarewicz, K. (2018). Feature Selection Based on Logistic Regression for 2-Class Classification of Multidimensional Molecular Data. In: Agre, G., van Genabith, J., Declerck, T. (eds) Artificial Intelligence: Methodology, Systems, and Applications. AIMSA 2018. Lecture Notes in Computer Science(), vol 11089. Springer, Cham. https://doi.org/10.1007/978-3-319-99344-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99344-7_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99343-0

  • Online ISBN: 978-3-319-99344-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics