Abstract
This paper describes a classification system which uses feature selection method based on logistic regression algorithm. As a feature elimination criterion the variance inflation factor of the statistical logistic regression model is used. The experimental results show that this method can be successfully applied for feature selection in classification problem of multidimensional microarray data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Student, S., Fujarewicz, K.: Stable feature selection and classification algorithms for multiclass microarray data. Biol. Direct 7(33), 1–20 (2012)
Fujarewicz, K., et al.: Large-scale data classification system based on Galaxy Server and protected from information leak. In: Nguyen, N.T., Tojo, S., Nguyen, L.M., Trawiński, B. (eds.) ACIIDS 2017. LNCS (LNAI), vol. 10192, pp. 765–773. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54430-4_73
Pojda, K., Jakubczak, M., Student, S., Świerniak, A., Fujarewicz, K.: Comparing different data fusion strategies for cancer classification. In: Rocha, Á., Guarda, T. (eds.) ICITS 2018. AISC, vol. 721, pp. 417–426. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73450-7_40
Boser, B.E., Guyon, I.M., Vapnik, V.: A training algorithm for optimal margin classifiers. In: Fifth Annual Workshop on Computational Learning Theory, Pittsburgh (1992)
Brown, M.P.S., et al.: Knowledge based analysis of microarray gene expression data by using support vector machines. Proc. Natl. Acad. Sci. 97(1), 262–267 (2000)
Vu, D.H., Muttaqi, K.M., Agalgaonkar, A.P.: A variance inflation factor and backward elimination based robust regression model for forecasting monthly electricity demand using climatic variables. Appl. Energy 140, 385–394 (2015)
Van den Bent, M.J.: Interobserver variation of the histopathological diagnosis in clinical trials on glioma: a clinicians perspective. Acta Neuropathol. 120(3), 297–304 (2010)
O’Brien, R.: A caution regarding rules of thumb for Variance Inflation Factors. Qual. Quant. 41, 673–690 (2007)
Clough, E., Barrett, T.: The gene expression omnibus database. Methods Mol. Biol. 1418, 93–110 (2016)
Ferrari, F., et al.: Novel definition files for human GeneChips based on GeneAnnot. BMC Bioinform. 8, 446 (2007)
Nutt, C.L., et al.: Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Res. 63(7), 1602–1607 (2003)
Acknowledgments
This research was supported by Polish National Centre for Research and Development under grant No. NCBR Strategmed2/267398/4/NCBR/2015.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Student, S., Płuciennik, A., Jakubczak, M., Fujarewicz, K. (2018). Feature Selection Based on Logistic Regression for 2-Class Classification of Multidimensional Molecular Data. In: Agre, G., van Genabith, J., Declerck, T. (eds) Artificial Intelligence: Methodology, Systems, and Applications. AIMSA 2018. Lecture Notes in Computer Science(), vol 11089. Springer, Cham. https://doi.org/10.1007/978-3-319-99344-7_29
Download citation
DOI: https://doi.org/10.1007/978-3-319-99344-7_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-99343-0
Online ISBN: 978-3-319-99344-7
eBook Packages: Computer ScienceComputer Science (R0)