Abstract
The vast amount of scientific literature poses a challenge when one is trying to understand a previously unknown topic. Selecting a representative subset of documents that covers most of the desired content can solve this challenge by presenting the user a small subset of documents. We build on existing research on representative subset extraction and apply it in an information retrieval setting. Our document selection process consists of three steps: computation of the document representations, clustering, and selection of documents. We implement and compare two different document representations, two different clustering algorithms, and three different selection methods using a coverage and a redundancy metric. We execute our 36 experiments on two datasets, with 10 sample queries each, from different domains. The results show that there is no clear favorite and that we need to ask the question whether coverage and redundancy are sufficient for evaluating representative subsets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aggarwal, C.C., Hinneburg, A., Keim, D.A.: On the surprising behavior of distance metrics in high dimensional space. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, pp. 420–434. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44503-X_27
Agrawal, R., Gollapudi, S., Halverson, A., Ieong, S.: Diversifying search results. In: Baeza-Yates, R.A., Boldi, P., Ribeiro-Neto, B.A., Cambazoglu, B.B. (eds.) Proceedings of the Second International Conference on Web Search and Web Data Mining, WSDM 2009, Barcelona, Spain, 9–11 February 2009, pp. 5–14. ACM (2009). https://doi.org/10.1145/1498759.1498766
Arampatzis, A., Kamps, J., Robertson, S.: Where to stop reading a ranked list?: threshold optimization using truncated score distributions. In: Allan, J., Aslam, J.A., Sanderson, M., Zhai, C., Zobel, J. (eds.) Proceedings of the 32nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2009, Boston, MA, USA, 19–23 July 2009, pp. 524–531. ACM (2009). https://doi.org/10.1145/1571941.1572031
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. In: Dietterich, T.G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems 14 (Neural Information Processing Systems: Natural and Synthetic, NIPS 2001, Vancouver, British Columbia, Canada, 3–8 December 2001), pp. 601–608. MIT Press (2001). http://papers.nips.cc/paper/2070-latent-dirichlet-allocation
Endo, Y., Miyamoto, S.: Spherical k-means++ clustering. In: Torra, V., Narukawa, Y. (eds.) MDAI 2015. LNCS (LNAI), vol. 9321, pp. 103–114. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23240-9_9
He, J., Meij, E., de Rijke, M.: Result diversification based on query-specific cluster ranking. JASIST 62(3), 550–571 (2011). https://doi.org/10.1002/asi.21468
Jardine, J.G.: Automatically generating reading lists. Ph.D. thesis, University of Cambridge, UK (2014). http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648722
Jardine, J.G., Teufel, S.: Topical PageRank: a model of scientific expertise for bibliographic search. In: Bouma, G., Parmentier, Y. (eds.) Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2014, Gothenburg, Sweden, 26–30 April 2014, pp. 501–510. The Association for Computer Linguistics (2014). http://aclweb.org/anthology/E/E14/E14-1053.pdf
Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents. In: Proceedings of the 31th International Conference on Machine Learning, ICML 2014, Beijing, China, 21–26 June 2014. JMLR Workshop and Conference Proceedings, vol. 32, pp. 1188–1196. JMLR.org (2014). http://jmlr.org/proceedings/papers/v32/le14.html
Lin, J.: Divergence measures based on the Shannon entropy. IEEE Trans. Inf. Theory 37(1), 145–151 (1991). https://doi.org/10.1109/18.61115
Lloyd, S.P.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–136 (1982). https://doi.org/10.1109/TIT.1982.1056489
Ma, B., Wei, Q., Chen, G.: A combined measure for representative information retrieval in enterprise information systems. J. Enterp. Inf. Manag. 24(4), 310–321 (2011). https://doi.org/10.1108/17410391111148567
Naveen, G.K.R., Nedungadi, P.: Query-based multi-document summarization by clustering of documents. In: Proceedings of the 2014 International Conference on Interdisciplinary Advances in Applied Computing, ICONIAAC 2014, pp. 58:1–58:8. ACM, New York (2014). https://doi.org/10.1145/2660859.2660972
Porter, M.F.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980). https://doi.org/10.1108/eb046814
Radev, D.R., Joseph, M.T., Gibson, B., Muthukrishnan, P.: A bibliometric and network analysis of the field of computational linguistics. J. Am. Soc. Inf. Sci. Technol. (2009)
Radev, D.R., Muthukrishnan, P., Qazvinian, V.: The ACL anthology network corpus. In: Proceedings, ACL Workshop on Natural Language Processing and Information Retrieval for Digital Libraries, Singapore (2009)
Radev, D.R., Muthukrishnan, P., Qazvinian, V., Abu-Jbara, A.: The ACL anthology network corpus. Lang. Res. Eval. 47, 1–26 (2013). https://doi.org/10.1007/s10579-012-9211-2
Řehůřek, R., Sojka, P.: Software framework for topic modelling with large corpora. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, pp. 45–50. ELRA, Valletta, May 2010. http://is.muni.cz/publication/884893/en
Whissell, J.S., Clarke, C.L.A.: Improving document clustering using Okapi BM25 feature weighting. Inf. Retr. 14(5), 466–487 (2011). https://doi.org/10.1007/s10791-011-9163-y
Zhang, B., Yin, X., Zhou, F., Jin, J.: Building your own reading list anytime via embedding relevance, quality, timeliness and diversity. In: Kando, N., Sakai, T., Joho, H., Li, H., de Vries, A.P., White, R.W. (eds.) Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Shinjuku, Tokyo, Japan, 7–11 August 2017, pp. 1109–1112. ACM (2017). https://doi.org/10.1145/3077136.3080734
Zhang, J., Liu, G., Ren, M.: Finding a representative subset from large-scale documents. J. Informetr. 10(3), 762–775 (2016). https://doi.org/10.1016/j.joi.2016.05.003
Zhang, J., Ren, M., Xiao, X., Zhang, J.: Providing consumers with a representative subset from online reviews. Online Inf. Rev. 41(6), 877–899 (2017). https://doi.org/10.1108/OIR-05-2016-0125
Acknowledgment
This research was co-financed by the EU H2020 project MOVING (http://www.moving-project.eu/) under contract no 693092 and the EU project DigitalChampions_SH.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Beck, T., Böschen, F., Scherp, A. (2018). What to Read Next? Challenges and Preliminary Results in Selecting Representative Documents. In: Elloumi, M., et al. Database and Expert Systems Applications. DEXA 2018. Communications in Computer and Information Science, vol 903. Springer, Cham. https://doi.org/10.1007/978-3-319-99133-7_19
Download citation
DOI: https://doi.org/10.1007/978-3-319-99133-7_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-99132-0
Online ISBN: 978-3-319-99133-7
eBook Packages: Computer ScienceComputer Science (R0)