Abstract
The popularity analysis of social media is crucial for monitoring the spread of information, which is beneficial to public concerns track and decision-making for online platforms. Numerous studies concentrate on the trend analysis on single platform, but they neglect the data correlation between different platforms. In this paper, we propose CROP, a cross-platform event popularity prediction model to forecast the popularity of events on one platform based on the information of the auxiliary platform. We first define the cross-platform event popularity prediction problem. Then we clean the data and explore the slot matching of event time series in diverse platforms. Moreover, we first define the aggregated popularity for the feature construction of event popularity prediction model. Finally, extensive experiments based on events data show that CROP achieves great improvement for predicting accuracy over other baseline approaches.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bandari, R., Asur, S., Huberman, B.A.: The pulse of news in social media: forecasting popularity. In: International AAAI Conference on Weblogs and Social Media (2012)
Chen, C., Xing, Z.: Towards correlating search on Google and asking on stack overflow. In: IEEE Annual Computer Software and Applications Conference (COMPSAC), vol. 1, pp. 83–92 (2016)
Gao, T., et al.: DancingLines: an analytical scheme to depict cross-platform event popularity. arXiv preprint arXiv:1712.08550 (2017)
Giraitis, L., Kokoszka, P., Leipus, R., Teyssière, G.: Rescaled variance and related tests for long memory in volatility and levels. J. Econ. 112(2), 265–294 (2003)
Giummol, F., Orlando, S., Tolomei, G.: Trending topics on Twitter improve the prediction of Google hot queries. In: IEEE International Conference on Social Computing (SocialCom), pp. 39–44 (2013)
Giummolè, F., Orlando, S., Tolomei, G.: A study on microblog and search engine user behaviors: how Twitter trending topics help predict Google hot queries. Human 2(3), 195 (2013)
Hoang, B.-T., Chelghoum, K., Kacem, I.: Modeling information diffusion via reputation estimation. In: Hartmann, S., Ma, H. (eds.) DEXA 2016. LNCS, vol. 9827, pp. 136–150. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44403-1_9
Keneshloo, Y., Wang, S., Han, E.H., Ramakrishnan, N.: Predicting the popularity of news articles. In: SIAM International Conference on Data Mining (ICDM), pp. 441–449 (2016)
Keogh, E.J., Pazzani, M.J.: Derivative dynamic time warping. In: SIAM International Conference on Data Mining (ICDM), pp. 1–11 (2001)
Leskovec, J., Backstrom, L., Kleinberg, J.: Meme-tracking and the dynamics of the news cycle. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD), pp. 497–506 (2009)
Mathioudakis, M., Koudas, N.: TwitterMonitor: trend detection over the twitter stream. In: ACM SIGMOD International Conference on Management of Data (ICMD), pp. 1155–1158 (2010)
Miao, Z., et al.: Cost-effective online trending topic detection and popularity prediction in microblogging. ACM Trans. Inf. Syst. (TOIS) 35(3), 1–36 (2016). Article no. 18
Rozenshtein, P., Anagnostopoulos, A., Gionis, A., Tatti, N.: Event detection in activity networks. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD), pp. 1176–1185. ACM (2014)
Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes Twitter users: real-time event detection by social sensors. In: ACM International Conference on World Wide Web (WWW), pp. 851–860 (2010)
Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech Signal Process. 26(1), 43–49 (1978)
Schubert, E., Weiler, M., Kriegel, H.P.: SigniTrend: scalable detection of emerging topics in textual streams by hashed significance thresholds. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD), pp. 871–880 (2014)
Shang, C., Panangadan, A., Prasanna, V.K.: Event extraction from unstructured text data. In: International Conference on Database and Expert Systems Applications (DEXA), pp. 543–557 (2015)
Struzik, Z.R., Siebes, A.: The Haar wavelet transform in the time series similarity paradigm. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 12–22. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-540-48247-5_2
Tang, Y., Ma, P., Kong, B., Ji, W., Gao, X., Peng, X.: ESAP: a novel approach for cross-platform event dissemination trend analysis between social network and search engine. In: Cellary, W., Mokbel, M.F., Wang, J., Wang, H., Zhou, R., Zhang, Y. (eds.) WISE 2016. LNCS, vol. 10041, pp. 489–504. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48740-3_36
Tolomei, G., Orlando, S., Ceccarelli, D., Lucchese, C.: Twitter anticipates bursts of requests for Wikipedia articles. In: ACM Workshop on Data-Driven User Behavioral Modelling and Mining from Social Media (DUBMOD), pp. 5–8 (2013)
Wang, S., Yan, Z., Hu, X., Philip, S.Y., Li, Z., Wang, B.: CPB: a classification-based approach for burst time prediction in cascades. Knowl. Inf. Syst. (KIS) 49(1), 243–271 (2016)
Wang, S., Kam, K., Xiao, C., Bowen, S., Chaovalitwongse, W.A.: An efficient time series subsequence pattern mining and prediction framework with an application to respiratory motion prediction. In: AAAI Conference on Artificial Intelligence (AAAI) (2016)
Yang, J., Leskovec, J.: Patterns of temporal variation in online media. In: ACM International Conference on Web Search and Data Mining (WSDM), pp. 177–186 (2011)
Zheng, L., Jin, P., Zhao, J., Yue, L.: A fine-grained approach for extracting events on microblogs. In: Decker, H., Lhotská, L., Link, S., Spies, M., Wagner, R.R. (eds.) DEXA 2014. LNCS, vol. 8644, pp. 275–283. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10073-9_22
Acknowledgement
This work is supported by the program of International S&T Cooperation (2016YFE0100300), the China 973 project (2014CB340303), the National Natural Science Foundation of China (Grant number 61472252, 61672353), the Shanghai Science and Technology Fund (Grant number 17510740200), and CCF-Tencent Open Research Fund (RAGR20170114).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Liao, M., Gao, X., Peng, X., Chen, G. (2018). CROP: An Efficient Cross-Platform Event Popularity Prediction Model for Online Media. In: Hartmann, S., Ma, H., Hameurlain, A., Pernul, G., Wagner, R. (eds) Database and Expert Systems Applications. DEXA 2018. Lecture Notes in Computer Science(), vol 11030. Springer, Cham. https://doi.org/10.1007/978-3-319-98812-2_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-98812-2_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-98811-5
Online ISBN: 978-3-319-98812-2
eBook Packages: Computer ScienceComputer Science (R0)