[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

CROP: An Efficient Cross-Platform Event Popularity Prediction Model for Online Media

  • Conference paper
  • First Online:
Database and Expert Systems Applications (DEXA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11030))

Included in the following conference series:

Abstract

The popularity analysis of social media is crucial for monitoring the spread of information, which is beneficial to public concerns track and decision-making for online platforms. Numerous studies concentrate on the trend analysis on single platform, but they neglect the data correlation between different platforms. In this paper, we propose CROP, a cross-platform event popularity prediction model to forecast the popularity of events on one platform based on the information of the auxiliary platform. We first define the cross-platform event popularity prediction problem. Then we clean the data and explore the slot matching of event time series in diverse platforms. Moreover, we first define the aggregated popularity for the feature construction of event popularity prediction model. Finally, extensive experiments based on events data show that CROP achieves great improvement for predicting accuracy over other baseline approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/huaban/jieba-analysis.

  2. 2.

    https://pypi.python.org/pypi/PyWavelets/.

References

  1. Bandari, R., Asur, S., Huberman, B.A.: The pulse of news in social media: forecasting popularity. In: International AAAI Conference on Weblogs and Social Media (2012)

    Google Scholar 

  2. Chen, C., Xing, Z.: Towards correlating search on Google and asking on stack overflow. In: IEEE Annual Computer Software and Applications Conference (COMPSAC), vol. 1, pp. 83–92 (2016)

    Google Scholar 

  3. Gao, T., et al.: DancingLines: an analytical scheme to depict cross-platform event popularity. arXiv preprint arXiv:1712.08550 (2017)

  4. Giraitis, L., Kokoszka, P., Leipus, R., Teyssière, G.: Rescaled variance and related tests for long memory in volatility and levels. J. Econ. 112(2), 265–294 (2003)

    Article  MathSciNet  Google Scholar 

  5. Giummol, F., Orlando, S., Tolomei, G.: Trending topics on Twitter improve the prediction of Google hot queries. In: IEEE International Conference on Social Computing (SocialCom), pp. 39–44 (2013)

    Google Scholar 

  6. Giummolè, F., Orlando, S., Tolomei, G.: A study on microblog and search engine user behaviors: how Twitter trending topics help predict Google hot queries. Human 2(3), 195 (2013)

    Google Scholar 

  7. Hoang, B.-T., Chelghoum, K., Kacem, I.: Modeling information diffusion via reputation estimation. In: Hartmann, S., Ma, H. (eds.) DEXA 2016. LNCS, vol. 9827, pp. 136–150. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44403-1_9

    Chapter  Google Scholar 

  8. Keneshloo, Y., Wang, S., Han, E.H., Ramakrishnan, N.: Predicting the popularity of news articles. In: SIAM International Conference on Data Mining (ICDM), pp. 441–449 (2016)

    Google Scholar 

  9. Keogh, E.J., Pazzani, M.J.: Derivative dynamic time warping. In: SIAM International Conference on Data Mining (ICDM), pp. 1–11 (2001)

    Google Scholar 

  10. Leskovec, J., Backstrom, L., Kleinberg, J.: Meme-tracking and the dynamics of the news cycle. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD), pp. 497–506 (2009)

    Google Scholar 

  11. Mathioudakis, M., Koudas, N.: TwitterMonitor: trend detection over the twitter stream. In: ACM SIGMOD International Conference on Management of Data (ICMD), pp. 1155–1158 (2010)

    Google Scholar 

  12. Miao, Z., et al.: Cost-effective online trending topic detection and popularity prediction in microblogging. ACM Trans. Inf. Syst. (TOIS) 35(3), 1–36 (2016). Article no. 18

    Article  Google Scholar 

  13. Rozenshtein, P., Anagnostopoulos, A., Gionis, A., Tatti, N.: Event detection in activity networks. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD), pp. 1176–1185. ACM (2014)

    Google Scholar 

  14. Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes Twitter users: real-time event detection by social sensors. In: ACM International Conference on World Wide Web (WWW), pp. 851–860 (2010)

    Google Scholar 

  15. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech Signal Process. 26(1), 43–49 (1978)

    Article  Google Scholar 

  16. Schubert, E., Weiler, M., Kriegel, H.P.: SigniTrend: scalable detection of emerging topics in textual streams by hashed significance thresholds. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD), pp. 871–880 (2014)

    Google Scholar 

  17. Shang, C., Panangadan, A., Prasanna, V.K.: Event extraction from unstructured text data. In: International Conference on Database and Expert Systems Applications (DEXA), pp. 543–557 (2015)

    Google Scholar 

  18. Struzik, Z.R., Siebes, A.: The Haar wavelet transform in the time series similarity paradigm. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 12–22. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-540-48247-5_2

    Chapter  Google Scholar 

  19. Tang, Y., Ma, P., Kong, B., Ji, W., Gao, X., Peng, X.: ESAP: a novel approach for cross-platform event dissemination trend analysis between social network and search engine. In: Cellary, W., Mokbel, M.F., Wang, J., Wang, H., Zhou, R., Zhang, Y. (eds.) WISE 2016. LNCS, vol. 10041, pp. 489–504. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48740-3_36

    Chapter  Google Scholar 

  20. Tolomei, G., Orlando, S., Ceccarelli, D., Lucchese, C.: Twitter anticipates bursts of requests for Wikipedia articles. In: ACM Workshop on Data-Driven User Behavioral Modelling and Mining from Social Media (DUBMOD), pp. 5–8 (2013)

    Google Scholar 

  21. Wang, S., Yan, Z., Hu, X., Philip, S.Y., Li, Z., Wang, B.: CPB: a classification-based approach for burst time prediction in cascades. Knowl. Inf. Syst. (KIS) 49(1), 243–271 (2016)

    Article  Google Scholar 

  22. Wang, S., Kam, K., Xiao, C., Bowen, S., Chaovalitwongse, W.A.: An efficient time series subsequence pattern mining and prediction framework with an application to respiratory motion prediction. In: AAAI Conference on Artificial Intelligence (AAAI) (2016)

    Google Scholar 

  23. Yang, J., Leskovec, J.: Patterns of temporal variation in online media. In: ACM International Conference on Web Search and Data Mining (WSDM), pp. 177–186 (2011)

    Google Scholar 

  24. Zheng, L., Jin, P., Zhao, J., Yue, L.: A fine-grained approach for extracting events on microblogs. In: Decker, H., Lhotská, L., Link, S., Spies, M., Wagner, R.R. (eds.) DEXA 2014. LNCS, vol. 8644, pp. 275–283. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10073-9_22

    Chapter  Google Scholar 

Download references

Acknowledgement

This work is supported by the program of International S&T Cooperation (2016YFE0100300), the China 973 project (2014CB340303), the National Natural Science Foundation of China (Grant number 61472252, 61672353), the Shanghai Science and Technology Fund (Grant number 17510740200), and CCF-Tencent Open Research Fund (RAGR20170114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liao, M., Gao, X., Peng, X., Chen, G. (2018). CROP: An Efficient Cross-Platform Event Popularity Prediction Model for Online Media. In: Hartmann, S., Ma, H., Hameurlain, A., Pernul, G., Wagner, R. (eds) Database and Expert Systems Applications. DEXA 2018. Lecture Notes in Computer Science(), vol 11030. Springer, Cham. https://doi.org/10.1007/978-3-319-98812-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98812-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98811-5

  • Online ISBN: 978-3-319-98812-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics