[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A New Text Semi-supervised Multi-label Learning Model Based on Using the Label-Feature Relations

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11055))

Included in the following conference series:

Abstract

Multi-label learning has become popular and omnipresent in many real-world problems, especially in text classification applications, in which an instance could belong to different classes simultaneously. Due to these label constraints, there are some challenges occurring in building multi-label data. Semi-supervised learning is one possible approach to exploit abundantly unlabeled data for enhancing the classification performance with a small labeled dataset. In this paper, we propose a solution to select the most influential label based on using the relations among the labels and features to a semi-supervised multi-label classification algorithm on texts. Experiments on two datasets of Vietnamese reviews and English emails of Enron show the positive effects of the proposal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://waikato.github.io/meka/

References

  1. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  2. Blei, D.M.: Probabilistic topic models. Commun. ACM 55(4), 77–84 (2012)

    Article  Google Scholar 

  3. Guo, Y., Schuurmans, D.: Semi-supervised multi-label classification: a simultaneous large-margin, subspace learning approach. In: Flach, Peter A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012. LNCS (LNAI), vol. 7524, pp. 355–370. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33486-3_23

    Chapter  Google Scholar 

  4. Kong, X., Ng, M.K., Zhou, Z.-H.: Transductive multilabel learning via label set propagation. IEEE Trans. Knowl. Data Eng. 25(3), 704–719 (2013)

    Article  Google Scholar 

  5. Pham, T.-N., Nguyen, V.-Q., Tran, V.-H., Nguyen, T.-T., Ha, Q.-T.: A semi-supervised multi-label classification framework with feature reduction and enrichment. J. Inf. Telecommun. 1(2), 141–154 (2017)

    Google Scholar 

  6. Szymański, P., Kajdanowicz, T.: Is a data-driven approach still better than random choice with naive Bayes classifiers? In: Nguyen, N.T., Tojo, S., Nguyen, L.M., Trawiński, B. (eds.) ACIIDS 2017. LNCS (LNAI), vol. 10191, pp. 792–801. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54472-4_74

    Chapter  Google Scholar 

  7. Wang, B., Tsotsos, J.: Dynamic label propagation for semi-supervised multi-class multi-label classification. Pattern Recognit. 52, 75–84 (2016)

    Article  Google Scholar 

  8. Zhan, W., Zhang, M.-L.: Inductive semi-supervised multi-label learning with co-training. In: KDD 2017, pp. 1305–1314 (2017)

    Google Scholar 

  9. Zhang, M.-L., Zhou, Z.-H.: A Review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng. 26(8), 1819–1837 (2014)

    Article  Google Scholar 

  10. Zhang, W., Tang, X., Yoshida, T.: TESC: an approach to text classification using semi-supervised clustering. Knowl. Based Syst. 75, 152–160 (2015)

    Article  Google Scholar 

  11. Zhang, M.-L., Lei, W.: LIFT: multi-label learning with label-specific features. IEEE Trans. Pattern Anal. Mach. Intell. 37(1), 107–120 (2015)

    Article  Google Scholar 

  12. Zhang, M.-L., Li, Y.-K., Liu, X.-Y., Geng, X.: Binary relevance for multi-label learning: an overview. Front. Comput. Sci. 12(2), 191–202 (2018)

    Article  Google Scholar 

  13. Zhang, Q.-W., Zhong, Y., Zhang, M.-L.: Feature-induced labeling information enrichment for multi-label learning. In: AAAI-18 (2018, in press)

    Google Scholar 

  14. Zhao, F., Guo, Y.: Semi-supervised multi-label learning with incomplete labels. In: IJCAI 2015, pp. 4062–4068 (2015)

    Google Scholar 

  15. Zhou, Z.-H., Zhang, M.-L.: Multi-label Learning. Encyclopedia of Machine Learning and Data Mining, pp. 875–881. Springer, Boston (2017). https://doi.org/10.1007/978-1-4899-7687-1

  16. Reyes, O., Morell, C., Ventura, S.: Effective lazy learning algorithm based on a data gravitation model for multi-label learning. Inf. Sci. 340–341, 159–174 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thi-Ngan Pham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ha, QT., Pham, TN., Nguyen, VQ., Nguyen, MC., Pham, TH., Nguyen, TT. (2018). A New Text Semi-supervised Multi-label Learning Model Based on Using the Label-Feature Relations. In: Nguyen, N., Pimenidis, E., Khan, Z., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2018. Lecture Notes in Computer Science(), vol 11055. Springer, Cham. https://doi.org/10.1007/978-3-319-98443-8_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98443-8_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98442-1

  • Online ISBN: 978-3-319-98443-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics