Abstract
Multi-label learning has become popular and omnipresent in many real-world problems, especially in text classification applications, in which an instance could belong to different classes simultaneously. Due to these label constraints, there are some challenges occurring in building multi-label data. Semi-supervised learning is one possible approach to exploit abundantly unlabeled data for enhancing the classification performance with a small labeled dataset. In this paper, we propose a solution to select the most influential label based on using the relations among the labels and features to a semi-supervised multi-label classification algorithm on texts. Experiments on two datasets of Vietnamese reviews and English emails of Enron show the positive effects of the proposal.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)
Blei, D.M.: Probabilistic topic models. Commun. ACM 55(4), 77–84 (2012)
Guo, Y., Schuurmans, D.: Semi-supervised multi-label classification: a simultaneous large-margin, subspace learning approach. In: Flach, Peter A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012. LNCS (LNAI), vol. 7524, pp. 355–370. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33486-3_23
Kong, X., Ng, M.K., Zhou, Z.-H.: Transductive multilabel learning via label set propagation. IEEE Trans. Knowl. Data Eng. 25(3), 704–719 (2013)
Pham, T.-N., Nguyen, V.-Q., Tran, V.-H., Nguyen, T.-T., Ha, Q.-T.: A semi-supervised multi-label classification framework with feature reduction and enrichment. J. Inf. Telecommun. 1(2), 141–154 (2017)
Szymański, P., Kajdanowicz, T.: Is a data-driven approach still better than random choice with naive Bayes classifiers? In: Nguyen, N.T., Tojo, S., Nguyen, L.M., Trawiński, B. (eds.) ACIIDS 2017. LNCS (LNAI), vol. 10191, pp. 792–801. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54472-4_74
Wang, B., Tsotsos, J.: Dynamic label propagation for semi-supervised multi-class multi-label classification. Pattern Recognit. 52, 75–84 (2016)
Zhan, W., Zhang, M.-L.: Inductive semi-supervised multi-label learning with co-training. In: KDD 2017, pp. 1305–1314 (2017)
Zhang, M.-L., Zhou, Z.-H.: A Review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng. 26(8), 1819–1837 (2014)
Zhang, W., Tang, X., Yoshida, T.: TESC: an approach to text classification using semi-supervised clustering. Knowl. Based Syst. 75, 152–160 (2015)
Zhang, M.-L., Lei, W.: LIFT: multi-label learning with label-specific features. IEEE Trans. Pattern Anal. Mach. Intell. 37(1), 107–120 (2015)
Zhang, M.-L., Li, Y.-K., Liu, X.-Y., Geng, X.: Binary relevance for multi-label learning: an overview. Front. Comput. Sci. 12(2), 191–202 (2018)
Zhang, Q.-W., Zhong, Y., Zhang, M.-L.: Feature-induced labeling information enrichment for multi-label learning. In: AAAI-18 (2018, in press)
Zhao, F., Guo, Y.: Semi-supervised multi-label learning with incomplete labels. In: IJCAI 2015, pp. 4062–4068 (2015)
Zhou, Z.-H., Zhang, M.-L.: Multi-label Learning. Encyclopedia of Machine Learning and Data Mining, pp. 875–881. Springer, Boston (2017). https://doi.org/10.1007/978-1-4899-7687-1
Reyes, O., Morell, C., Ventura, S.: Effective lazy learning algorithm based on a data gravitation model for multi-label learning. Inf. Sci. 340–341, 159–174 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Ha, QT., Pham, TN., Nguyen, VQ., Nguyen, MC., Pham, TH., Nguyen, TT. (2018). A New Text Semi-supervised Multi-label Learning Model Based on Using the Label-Feature Relations. In: Nguyen, N., Pimenidis, E., Khan, Z., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2018. Lecture Notes in Computer Science(), vol 11055. Springer, Cham. https://doi.org/10.1007/978-3-319-98443-8_37
Download citation
DOI: https://doi.org/10.1007/978-3-319-98443-8_37
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-98442-1
Online ISBN: 978-3-319-98443-8
eBook Packages: Computer ScienceComputer Science (R0)