[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Hybrid Visual-Model Based Robot Control Strategy for Micro Ground Robots

  • Conference paper
  • First Online:
From Animals to Animats 15 (SAB 2018)

Abstract

This paper proposed a hybrid vision-based robot control strategy for micro ground robots by mediating two vision models from mixed categories: a bio-inspired collision avoidance model and a segmentation based target following model. The implemented model coordination strategy is described as a probabilistic model using finite state machine (FSM) that allows the robot to switch behaviours adapting to the acquired visual information. Experiments demonstrated the stability and convergence of the embedded hybrid system by real robots, including the studying of collective behaviour by a swarm of such robots with environment mediation. This research enables micro robots to run visual models with more complexity. Moreover, it showed the possibility to realize aggregation behaviour on micro robots by utilizing vision as the only sensing modality from non-omnidirectional cameras.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zufferey, J.-C., Floreano, D.: Toward 30-gram autonomous indoor aircraft: vision-based obstacle avoidance and altitude control. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2594–2599 (2005)

    Google Scholar 

  2. Meyer, H.G., Bertrand, O.J.N., Paskarbeit, J., Lindemann, J.P., Schneider, A., Egelhaaf, M.: A bio-inspired model for visual collision avoidance on a hexapod walking robot. In: Lepora, N.F.F., Mura, A., Mangan, M., Verschure, P.F.M.J.F.M.J., Desmulliez, M., Prescott, T.J.J. (eds.) Living Machines 2016. LNCS (LNAI), vol. 9793, pp. 167–178. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42417-0_16

    Chapter  Google Scholar 

  3. Fu, Q., Hu, C., Liu, T., Yue, S.: Collision selective LGMDs neuron models research benefits from a vision-based autonomous micro robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems 2017, pp. 3996–4002 (2017)

    Google Scholar 

  4. Ardin, P., Peng, F., Mangan, M., Lagogiannis, K., Webb, B.: Using an insect mushroom body circuit to encode route memory in complex natural environments. PLoS Comput. Biol. 12(2), e1004683 (2016)

    Article  Google Scholar 

  5. Bagheri, Z., Cazzolato, B., Grainger, S., O’Carroll, D., Wiederman, S.: An autonomous robot inspired by insect neurophysiology pursues moving features in natural environments. J. Neural Eng. 14(4), 046030 (2017)

    Article  Google Scholar 

  6. Serres, J., Ruffier, F.: Optic flow-based robotics. Wiley Encyclopedia of Electrical and Electronics Engineering (2016)

    Google Scholar 

  7. Zufferey, J.-C., Floreano, D.: Fly-inspired visual steering of an ultralight indoor aircraft. IEEE Trans. Robot. 22(1), 137–146 (2006)

    Article  Google Scholar 

  8. Hu, C., Arvin, F., Xiong, C., Yue, S.: Bio-inspired embedded vision system for autonomous micro-robots: the LGMD case. IEEE Trans. Cogn. Dev. Syst. 9(3), 241–254 (2017)

    Article  Google Scholar 

  9. Rind, F.C., Simmons, P.J.: Seeing what is coming: building collision-sensitive neurones. Trends Neurosci. 22(5), 215–220 (1999)

    Article  Google Scholar 

  10. Bermudez i Badia, S., Pyk, P., Verschure, P.F.M.J.: A fly-locust based neuronal control system applied to an unmanned aerial vehicle: the invertebrate neuronal principles for course stabilization, altitude control and collision avoidance. Int. J. Robot. Res. 26(7), 759–772 (2007)

    Article  Google Scholar 

  11. Franceschini, N., Pichon, J.-M., Blanes, C.: From insect vision to robot vision. Phil. Trans. R. Soc. Lond. B 337(1281), 283–294 (1992)

    Article  Google Scholar 

  12. Das, A.K., Fierro, R., Kumar, V., Ostrowski, J.P., Spletzer, J., Taylor, C.J.: A vision-based formation control framework. IEEE Trans. Robot. Autom. 18(5), 813–825 (2002)

    Article  Google Scholar 

  13. Benavidez, P., Jamshidi, M.: Mobile robot navigation and target tracking system. In: 2011 6th International Conference on System of Systems Engineering (SoSE), pp. 299–304. IEEE (2011)

    Google Scholar 

  14. Arvin, F., Turgut, A.E., Bazyari, F., Arikan, K.B., Bellotto, N., Yue, S.: Cue-based aggregation with a mobile robot swarm: a novel fuzzy-based method. Adapt. Behav. 22(3), 189–206 (2014)

    Article  Google Scholar 

  15. Bermudez i Badia, S., Bernardet, U., Verschure, P.F.: Non-linear neuronal responses as an emergent property of afferent networks: a case study of the locust lobula giant movement detector. PLoS Comput. Biol. 6(3), e1000701 (2010)

    Article  MathSciNet  Google Scholar 

  16. Loesdau, M., Chabrier, S., Gabillon, A.: Hue and saturation in the RGB color space. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds.) ICISP 2014. LNCS, vol. 8509, pp. 203–212. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07998-1_23

    Chapter  Google Scholar 

  17. Hu, C., Fu, Q., Yue, S., Colias IV: the affordable micro robot platform with bio-inspired vision. In: 19th Towards Autonomous Robotic Systems (TAROS) (2018)

    Chapter  Google Scholar 

  18. Krajník, T., Nitsche, M., Faigl, J., Vaněk, P., Saska, M., Přeučil, L., Duckett, T., Mejail, M.: A practical multirobot localization system. J. Intell. Robot. Syst. 76(3–4), 539–562 (2014)

    Article  Google Scholar 

  19. Lightbody, P., Krajník, T., Hanheide, M.: A versatile high-performance visual fiducial marker detection system with scalable identity encoding. In: Proceedings of the Symposium on Applied Computing, pp. 276–282. ACM (2017)

    Google Scholar 

  20. Correll, N., Martinoli, A.: Modeling self-organized aggregation in a swarm of miniature robots. In: IEEE 2007 International Conference on Robotics and Automation Workshop on Collective Behaviors Inspired by Biological and Biochemical Systems, no. SWIS-CONF-2007-002 (2007)

    Google Scholar 

  21. Garnier, S., Gautrais, J., Asadpour, M., Jost, C., Theraulaz, G.: Self-organized aggregation triggers collective decision making in a group of cockroach-like robots. Adapt. Behav. 17(2), 109–133 (2009)

    Article  Google Scholar 

  22. Kernbach, S., Häbe, D., Kernbach, O., Thenius, R., Radspieler, G., Kimura, T., Schmickl, T.: Adaptive collective decision-making in limited robot swarms without communication. Int. J. Robot. Res. 32(1), 35–55 (2013)

    Article  Google Scholar 

  23. Gauci, M., Chen, J., Li, W., Dodd, T.J., Groß, R.: Self-organized aggregation without computation. Int. J. Robot. Res. 33(8), 1145–1161 (2014)

    Article  Google Scholar 

  24. Denuelle, A., Srinivasan, M.V.: Bio-inspired visual guidance: from insect homing to UAS navigation. In: 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 326–332. IEEE (2015)

    Google Scholar 

Download references

Acknowledgement

This work is supported by EU-FP7-IRSES project HAZCEPT(318907) and Horizon2020 project STEP2DYNA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, C., Fu, Q., Liu, T., Yue, S. (2018). A Hybrid Visual-Model Based Robot Control Strategy for Micro Ground Robots. In: Manoonpong, P., Larsen, J., Xiong, X., Hallam, J., Triesch, J. (eds) From Animals to Animats 15. SAB 2018. Lecture Notes in Computer Science(), vol 10994. Springer, Cham. https://doi.org/10.1007/978-3-319-97628-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97628-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97627-3

  • Online ISBN: 978-3-319-97628-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics