Abstract
This paper presents a pedestrian detection system focused on night time conditions for vehicular safety applications. For this purpose we analyze the performance of the recent deep learning detector Faster R-CNN [1] with infrared images for detecting pedestrians at night. We discovered that Faster R-CNN has drawbacks when detecting pedestrians that are far away. For this reason, we present a new Faster R-CNN architecture focused on multi scale detection, through two Region Proposal Networks RPNCD and RPNLD. Our architecture has been compared with the best models such as VGG-16 and Resnet 101. The experimental results have been development on the CVC-09 dataset [2]. These show an improvement when detecting far away pedestrians, with a \(37.73\%\) miss rate on \(10^{-2}\) FPPI and the mAP is \(85\%\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99. IEEE Conference Publication (2015)
CVC-09: FIR Sequence Pedestrian Dataset. http://adas.cvc.uab.es/elektra/enigma-portfolio/item-1/
Koing, D., Adam, M., Jarvers, C., Layher, G., Neumann, H., Teutsch, M.: Fully convolutional region proposal networks for multispectral person detection. In: CVPR Workshop (2017)
Olmeda, D., Premebida, C., Nunes, U., Armingol, J.M., de la Escalera, A.: Pedestrian detection in far infrared images. Integr. Computer-Aided Eng. 20, 347–360 (2013)
World Health Organization WHO: Road traffic injuries. http://www.who.int/violence_injury_prevention/road_traffic/en/
Agencia Nacional de Transito del Ecuador: Siniestros Octubre 2015. https://www.ant.gob.ec/index.php/descargable/file/3813-siniestros-octubre-2016
Yan, J., Zhang, X., Lei, Z., Liao, S., Li, S.: Robust multi-resolution pedestrian detection in traffic scenes. In: CVPR Workshop (2013)
Li, J., Liang, X., Shen, S., Xu, T., Feng J., Yan, S: Scale-aware Fast R-CNN for pedestrian detection. Cornell University (2015)
Liu, J., Zhang, S., Wang, S., Metaxas, N.: Multi-spectral deep neural networks for pedestrian detection. In: BMVC (2016)
Guan, D., Cao, Y., Yang, J., Cao, Y., Ying Yang, M.: Fusion of multispectral data through illumination-aware deep neural networks for pedestrian detection. Cornell University (2018)
Deng, L., Yu, D.: Deep learning methods and applications. Found. Trends Sig. Process. 7, 3–4 (2014)
Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., Lew, M.S.: Deep learning for visual understanding: a review. In: Deep Learning for Visual Understanding, vol. 187, pp. 27–48. Neurocomputing (2015)
Ertler, C., Posseger, H., Optiz, M., Bischof, H.: Pedestrian detection in RGB-D images from an elevated viewpoint. In: Computer Vision Winter Workshop (2017)
Cao, C., Wook, J.: Robust object proposals re-ranking for object detection in autonomous driving using convolutional neural networks. Sig. Process. Image Commun. 53, 110–122 (2017)
Zhang, X., Chen, G., Saruta, K., Terata, Y.: Deep convolutional neural networks for all-day pedestrian detection. In: Kim, K., Joukov, N. (eds.) ICISA 2017. LNEE, vol. 424, pp. 171–178. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-4154-9_21
Duyoung, H., Eunju, L., Ko, C.B.: Pedestrian detection at night using deep neural networks and saliency maps. J. Imaging Sci. Technol. 61, 60403-1–60403-9 (2017)
Chen, B., Wang, W., Qin, Q.: Robust multi-stage approach for the detection of moving target from infrared imagery. SPIE Optical Eng. 51(6), 067006 (2012)
Jong, K., Hyung, H., Kang, P.: Convolutional neural network-based human detection in nighttime images using visible light camera sensors. Sensors 17, 1065 (2017)
Chun, Y., Cai, D.: Research of the method of quicky finding the pedestrian area of interest. J. Electr. Electron. Eng. 5, 180–185 (2017)
Qi, B., John, V., Liu, Z., Mita, S.: Pedestrian detection from thermal images with a scattered difference of directional gradients feature descriptor. In: 17th International IEEE Conference on Intelligent Transportation Systems (ITSC). IEEE Press (2014)
Baek, J., Kim, J., Kim, E.: Fast and efficient pedestrian detection via the cascade implementation of an additive kernel support vector machine. IEEE Trans. Intell. Transp. Syst. 18, 902–916 (2017)
Jeong, M., Kwak, J., Son, J., Ko, B., Nam, J.: Fast pedestrian detection using a night vision system for safety driving. In: 11th International Conference on Computer Graphics, Imaging and Visualization, pp. 69–72. IEEE Press (2014)
Tome, D., Monti, F., Baroffio, L., Bondi, L., Tagliasacchi, M., Tubaro, S.: Deep convolutional neural networks for pedestrian detection. Sig. Process. Image Commun. 47, 482–489 (2016)
Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: OverFeat: integrated recognition, localization and detection using convolutional networks. In: CVPR (2014)
Perlina, H., Lopes, H., Tagliasacchi, M., Tubaro, S.: Extracting human attributes using a convolutional neural network approach. Pattern Recogn. Lett. 68, 250–259 (2016)
Ribeiro, D., Nascimento, J., Bernardino, A., Carneiro, G.: Improving the performance of pedestrian detectors using convolutional learning. Pattern Recogn. 61, 641–649 (2017)
Sermanet, P., Kavukcuoglu, K., Chintala, S., LeCun, Y.: Pedestrian detection with unsupervised multi-stage feature learning. In: CVPR (2013)
Kim, J., Baek, J., Kim, E.: A novel on-road vehicle detection method using \(\pi \)-HOG. IEEE Trans. Intell. Transp. Syst. 16, 3414–3429 (2015)
Piniarski, K., Pawłowski, P., Dąbrowski, A.: Pedestrian detection by video processing in automotive night vision system. In: Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), pp. 104–109. IEEE Press (2014)
Chang, S., Yang, F., Wu, W., Cho, Y., Chen, S.: Nighttime pedestrian detection using thermal imaging based on HOG feature. In: Proceedings 2011 International Conference on System Science and Engineering. IEEE Press (2011)
Cao, J., Pang, Y., Li, X.: Learning multilayer channel features for pedestrian detection. IEEE Trans. Image Process. 26, 3210–3220 (2016)
Sun, H., Wang, C., Wang, B.: Night vision pedestrian detection using a forward-looking infrared camera. In: International Workshop on Multi-Platform/Multi-Sensor Remote Sensing and Mapping (M2RSM), pp. 1–4. IEEE Press (2011)
Govardhan, P., Pati, C.: NIR image based pedestrian detection in night vision with cascade classification and validation. In: IEEE International Conference on Advanced Communications, Control and Computing Technologies, pp. 1438–1438. IEEE Press (2011)
Girshick, R., Donahue, J., Darrell, T., Malik, J: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Computer Vision and Pattern Recognition, pp. 580–587. IEEE Press (2014)
Girshick, R.: Fast R-CNN. In: Computer Vision and Pattern Recognition, pp. 1440–1448. IEEE Press (2015)
Zhang, L., Lin, L., Liang, X., He, K.: Is faster R-CNN doing well for pedestrian detection? In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 443–457. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_28
Cai, Z., Fan, Q., Feris, R.S., Vasconcelos, N.: A unified multi-scale deep convolutional neural network for fast object detection. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 354–370. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_22
Konecny, J., Liu, J., Richtarik, P., Takac, M.: Mini-batch semi-stochastic gradient descent in the proximal setting. IEEE J. Sel. Top. Sig. Process. 10, 242–255 (2016)
Kingma, D., Lei Ba, J.: Adam: a method for stochastic optimization. In: 3rd International Conference for Learning Representations. ICLR, San Diego (2015)
Dollár, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: an evaluation of the state of the art. IEEE Trans. Pattern Anal. Mach. Intell. 34, 743–761 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Galarza-Bravo, M.A., Flores-Calero, M.J. (2018). Pedestrian Detection at Night Based on Faster R-CNN and Far Infrared Images. In: Chen, Z., Mendes, A., Yan, Y., Chen, S. (eds) Intelligent Robotics and Applications. ICIRA 2018. Lecture Notes in Computer Science(), vol 10985. Springer, Cham. https://doi.org/10.1007/978-3-319-97589-4_28
Download citation
DOI: https://doi.org/10.1007/978-3-319-97589-4_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-97588-7
Online ISBN: 978-3-319-97589-4
eBook Packages: Computer ScienceComputer Science (R0)