[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Enhancing ENIGMA Given Clause Guidance

  • Conference paper
  • First Online:
Intelligent Computer Mathematics (CICM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11006))

Included in the following conference series:

Abstract

ENIGMA is an efficient implementation of learning-based guidance for given clause selection in saturation-based automated theorem provers. In this work, we describe several additions to this method. This includes better clause features, adding conjecture features as the proof state characterization, better data pre-processing, and repeated model learning. The enhanced ENIGMA is evaluated on the MPTP2078 dataset, showing significant improvements.

J. Jakubův and J. Urban—This work was supported by the ERC Consolidator grant no. 649043 AI4REASON, and by the Czech project AI&Reasoning CZ.02.1.01/0.0/0.0/15_003/0000466 and the European Regional Development Fund.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/ai4reason/eprover/tree/ENIGMA.

  2. 2.

    https://github.com/ai4reason/atpy.

References

  1. Alama, J., Heskes, T., Kühlwein, D., Tsivtsivadze, E., Urban, J.: Premise selection for mathematics by corpus analysis and kernel methods. J. Autom. Reason. 52(2), 191–213 (2014). https://doi.org/10.1007/s10817-013-9286-5

    Article  MathSciNet  MATH  Google Scholar 

  2. Fan, R., Chang, K., Hsieh, C., Wang, X., Lin, C.: LIBLINEAR: a library for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)

    MATH  Google Scholar 

  3. Jakubův, J., Urban, J.: Extending E prover with similarity based clause selection strategies. In: Kohlhase, M., Johansson, M., Miller, B., de de Moura, L., Tompa, F. (eds.) CICM 2016. LNCS (LNAI), vol. 9791, pp. 151–156. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42547-4_11

    Chapter  Google Scholar 

  4. Jakubův, J., Urban, J.: ENIGMA: efficient learning-based inference guiding machine. In: Geuvers, H., England, M., Hasan, O., Rabe, F., Teschke, O. (eds.) CICM 2017. LNCS (LNAI), vol. 10383, pp. 292–302. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62075-6_20

    Chapter  Google Scholar 

  5. Schulz, S.: E - a brainiac theorem prover. AI Commun. 15(2–3), 111–126 (2002)

    MATH  Google Scholar 

  6. Schulz, S.: Simple and efficient clause subsumption with feature vector indexing. In: Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics. LNCS (LNAI), vol. 7788, pp. 45–67. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36675-8_3

    Chapter  Google Scholar 

  7. Sutcliffe, G.: The 8th IJCAR automated theorem proving system competition - CASC-J8. AI Commun. 29(5), 607–619 (2016). https://doi.org/10.3233/AIC-160709

    Article  MathSciNet  MATH  Google Scholar 

  8. Urban, J., Sutcliffe, G., Pudlák, P., Vyskočil, J.: MaLARea SG1 - machine learner for automated reasoning with semantic guidance. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 441–456. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71070-7_37

    Chapter  MATH  Google Scholar 

  9. Veroff, R.: Using hints to increase the effectiveness of an automated reasoning program: case studies. J. Autom. Reason. 16(3), 223–239 (1996). https://doi.org/10.1007/BF00252178

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Jakubův .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jakubův, J., Urban, J. (2018). Enhancing ENIGMA Given Clause Guidance. In: Rabe, F., Farmer, W., Passmore, G., Youssef, A. (eds) Intelligent Computer Mathematics. CICM 2018. Lecture Notes in Computer Science(), vol 11006. Springer, Cham. https://doi.org/10.1007/978-3-319-96812-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96812-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96811-7

  • Online ISBN: 978-3-319-96812-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics