Abstract
ENIGMA is an efficient implementation of learning-based guidance for given clause selection in saturation-based automated theorem provers. In this work, we describe several additions to this method. This includes better clause features, adding conjecture features as the proof state characterization, better data pre-processing, and repeated model learning. The enhanced ENIGMA is evaluated on the MPTP2078 dataset, showing significant improvements.
J. Jakubův and J. Urban—This work was supported by the ERC Consolidator grant no. 649043 AI4REASON, and by the Czech project AI&Reasoning CZ.02.1.01/0.0/0.0/15_003/0000466 and the European Regional Development Fund.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alama, J., Heskes, T., Kühlwein, D., Tsivtsivadze, E., Urban, J.: Premise selection for mathematics by corpus analysis and kernel methods. J. Autom. Reason. 52(2), 191–213 (2014). https://doi.org/10.1007/s10817-013-9286-5
Fan, R., Chang, K., Hsieh, C., Wang, X., Lin, C.: LIBLINEAR: a library for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)
Jakubův, J., Urban, J.: Extending E prover with similarity based clause selection strategies. In: Kohlhase, M., Johansson, M., Miller, B., de de Moura, L., Tompa, F. (eds.) CICM 2016. LNCS (LNAI), vol. 9791, pp. 151–156. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42547-4_11
Jakubův, J., Urban, J.: ENIGMA: efficient learning-based inference guiding machine. In: Geuvers, H., England, M., Hasan, O., Rabe, F., Teschke, O. (eds.) CICM 2017. LNCS (LNAI), vol. 10383, pp. 292–302. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62075-6_20
Schulz, S.: E - a brainiac theorem prover. AI Commun. 15(2–3), 111–126 (2002)
Schulz, S.: Simple and efficient clause subsumption with feature vector indexing. In: Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics. LNCS (LNAI), vol. 7788, pp. 45–67. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36675-8_3
Sutcliffe, G.: The 8th IJCAR automated theorem proving system competition - CASC-J8. AI Commun. 29(5), 607–619 (2016). https://doi.org/10.3233/AIC-160709
Urban, J., Sutcliffe, G., Pudlák, P., Vyskočil, J.: MaLARea SG1 - machine learner for automated reasoning with semantic guidance. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 441–456. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71070-7_37
Veroff, R.: Using hints to increase the effectiveness of an automated reasoning program: case studies. J. Autom. Reason. 16(3), 223–239 (1996). https://doi.org/10.1007/BF00252178
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Jakubův, J., Urban, J. (2018). Enhancing ENIGMA Given Clause Guidance. In: Rabe, F., Farmer, W., Passmore, G., Youssef, A. (eds) Intelligent Computer Mathematics. CICM 2018. Lecture Notes in Computer Science(), vol 11006. Springer, Cham. https://doi.org/10.1007/978-3-319-96812-4_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-96812-4_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-96811-7
Online ISBN: 978-3-319-96812-4
eBook Packages: Computer ScienceComputer Science (R0)