[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Plotting Planar Implicit Curves and Its Applications

  • Conference paper
  • First Online:
Mathematical Software – ICMS 2018 (ICMS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10931))

Included in the following conference series:

  • 1233 Accesses

Abstract

We present a new method to plot planar implicit curve in a given box \(B \in {\mathbb {R}}^2\). Based on analyzing the geometry of the level sets of the given function, following the points with local maximal (or minimal) curvatures on the level sets, we compute points on each components of the given function in box B and trace each component to plot the curve. We also used this method to find real zeros of bivariate function systems in a given box. The experiments shows that our implementation works well. It works for polynomials with degrees more than 10,000. It also works for non-polynomial case.

The work is partially supported by NSFC Grants 11471327.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnon, D.S., Collins, G., McCallum, S.: Cylindrical algebraic decomposition, II: an adjacency algorithm for plane. SIAM J. Comput. 13(4), 878–889 (1984)

    Article  MathSciNet  Google Scholar 

  2. Berberich, E., et al.: Exacus: efficient and exact algorithms for curves and surfaces. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 155–166. Springer, Heidelberg (2005). https://doi.org/10.1007/11561071_16

    Chapter  Google Scholar 

  3. Brake, D.A., Bates, D.J., Hao, W., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Algorithm 976: bertini real: numerical decomposition of real algebraic curves and surfaces. ACM Trans. Math. Softw. 44(1), 10 (2017)

    Article  Google Scholar 

  4. Chen, F.L., Feng, Y., Kozak, J.: Tracing a plane algebraic curve. Appl. Math. J. Chin. Univ. 12(1), 15–24 (1997)

    Article  Google Scholar 

  5. Cheng, J.-S., Lazard, S., Peñaranda, L., Pouget, M., Rouillier, F., Tsigaridas, E.: On the topology of the real algebraic plane curves. Math. Comput. Sci. 4, 113–117 (2010)

    Article  MathSciNet  Google Scholar 

  6. Cheng, J.-S., Wen, J., Zhang, W.: Level set sweeping method for bivariate function(s) and its applications, manuscript (2018)

    Google Scholar 

  7. Chandler, R.E.: A tracking algorithm for implicitly defined curves. IEEE Comput. Graphics Appl. 8(2), 83–89 (1988)

    Article  Google Scholar 

  8. Christoforou, E., Mantzaflaris, A., Mourrain, B., Wintz, J.: Axl, a geometric modeler for semi-algebraic shapes. In: Proceeding of ICMS 2018 (2018)

    Google Scholar 

  9. Gao, X.S., Li, M.: Rational quadratic approximation to real algebraic curves. Comput. Aided Geom. Des. 21, 805–828 (2004)

    Article  MathSciNet  Google Scholar 

  10. González-Vega, L., Necula, I.: Efficient topology determination of implicitly defined algebraic plane curves. Comput. Aided Geom. Des. 19, 719–743 (2002)

    Article  MathSciNet  Google Scholar 

  11. Goldman, R.: Curvature formulas for implicit curves and surfaces. Comput. Aided Geom. Des. 22(7), 632–658 (2005)

    Article  MathSciNet  Google Scholar 

  12. Gomes, A.J.P.: A continuation algorithm for planar implicit curves with singularities, Special Section on CAD/Graphics 2013. Comput. Graph. 38, 365–373 (2014)

    Article  Google Scholar 

  13. Lien, J.-M., Sharma, V., Vegter, G., Yap, C.: Isotopic arrangement of simple curves: an exact numerical approach based on subdivision. In: Proceeding of International Congress on Mathematical Softwares (ICMS), Seoul (2014)

    Google Scholar 

  14. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. In: Proceedings of SIGGRAPH 1987. ACM Press (1987)

    Article  Google Scholar 

  15. Liang, C., Mourrain, B., Pavone, J.P.: Subdivision methods for the topology of 2D and 3D implicit curves. In: Jüttler, B., Piene, R. (eds.) Geometric Modeling and Algebraic Geometry. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-72185-7_11

    Chapter  MATH  Google Scholar 

  16. Lin, L., Yap, C.: Adaptive isotopic approximation of nonsingular curves: the parameterizability and nonlocal isotopy approach. Discrete Comput. Geom. 45(4), 760–795 (2011). Special Issue: 25th Annual Symposium on Computational Geometry SOCG 2009

    Article  MathSciNet  Google Scholar 

  17. Martin, R., Shou, H., Voiculescu, I., Bowyer, A., Wang, G.: Comparison of interval methods for plotting algebraic curves. Comput. Aided Geom. Des. 19, 553–587 (2002)

    Article  MathSciNet  Google Scholar 

  18. Plantinga, S., Vegter, G.: Isotopic meshing of implicit surfaces. Vis. Comput. 23, 45–58 (2007)

    Article  Google Scholar 

  19. Strzebonski, A.: Real root isolation for exp-log-arctan functions. J. Symbolic Comput. 47, 282–314 (2012)

    Article  MathSciNet  Google Scholar 

  20. https://exploration.open.wolframcloud.com/objects/exploration/TranscendentalEquations.nb

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-San Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheng, JS., Wen, J., Zhang, W. (2018). Plotting Planar Implicit Curves and Its Applications. In: Davenport, J., Kauers, M., Labahn, G., Urban, J. (eds) Mathematical Software – ICMS 2018. ICMS 2018. Lecture Notes in Computer Science(), vol 10931. Springer, Cham. https://doi.org/10.1007/978-3-319-96418-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96418-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96417-1

  • Online ISBN: 978-3-319-96418-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics