[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A New Selection Without Replacement for Non-dominated Sorting Genetic Algorithm II

  • Conference paper
  • First Online:
Intelligent Computing Methodologies (ICIC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10956))

Included in the following conference series:

  • 2542 Accesses

Abstract

NSGA-II has shown good performance in solving multi-objective optimization problems, However, the tournament selection strategy in NSGA-II always generates many duplicate individuals. This phenomenon not only affects the crossover, mutation and updating operations and finally deteriorates the performance significantly. To overcome this problem, this paper introduces a new strategy, namely selection strategy without replacement, which can produces different individuals to increase the diversity. Simulation results show the proposed tournament selection without replacement achieve better performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Heller, L., Sack, A.: Unexpected failure of a greedy choice algorithm proposed by Hoffman. Int. J. Math. Comput. Sci. 12(2), 117–126 (2017)

    MathSciNet  MATH  Google Scholar 

  2. Zhu, H., He, Y., Wang, X., Tsang, E.C.C.: Discrete differential evolutions for the discounted 0–1 knapsack problem. Int. J. Bio-Inspired Comput. 10(4), 219–238 (2017)

    Article  Google Scholar 

  3. Pisut, P., Voratas, K.: A two-level particle swarm optimisation algorithm for open-shop scheduling problem. Int. J. Comput. Sci. Math. 7(6), 575–585 (2016)

    Article  MathSciNet  Google Scholar 

  4. Wang, H., Wang, W., Sun, H., Shahryar, R.: Firefly algorithm with random attraction. Int. J. Bio-Inspired Comput. 8(1), 33–41 (2016)

    Article  Google Scholar 

  5. Cai, X., Gao, X.: Improved bat algorithm with optimal forage strategy and random disturbance strategy. Int. J. Bio-Inspired Comput. 8(4), 205–214 (2016)

    Article  Google Scholar 

  6. Cui, Z., Xue, F., Cai, X., Cao, Y., Wang, G., Chen, J.: Detection of malicious code variants based on deep learning. IEEE Trans. Ind. Inform. https://doi.org/10.1109/tii.2018.2822680

  7. Cui, Z., Cao, Y., Cai, X., Cai, J., Chen, J.: Optimal LEACH protocol with modified bat algorithm for big data sensing systems in Internet of Things. J. Parallel Distrib. Comput. (2017). https://doi.org/10.1016/j.jpdc.2017.12.014

    Article  Google Scholar 

  8. Chen, W., Xiang, T., Xu, J.: Team evolutionary algorithm based on PSO. Pattern Recog. Artif. Intell. 28(6), 521–527 (2015)

    Google Scholar 

  9. Wang, H., Ni, Z., Wu, Z.: Multi-tenant service customization algorithm based on map reduce and multi-objective ant colony optimization. Pattern Recog. Artif. Intell. 27(12), 1105–1116 (2014)

    Google Scholar 

  10. Eswari, R., Nickolas, S.: Modified multi-objective firefly algorithm for task scheduling problem on heterogeneous systems. Int. J. Bio-Inspired Comput. 8(6), 379–393 (2016)

    Article  Google Scholar 

  11. Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algorithms. In: International Conference on Genetic Algorithms, pp. 93–100. Lawrence Erlbaum Associates Inc. (1985)

    Google Scholar 

  12. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary algorithm. In: Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, pp. 95–100. Springer , Berlin (2002)

    Google Scholar 

  13. Deb, K., Pratap, A., Agarwal, S., et al.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  14. Patel, R., Raghuwanshi, M., Malik, L.: An improved ranking scheme for selection of parents in multi-objective genetic algorithm. In: International Conference on Communication Systems and Network Technologies, pp. 734–739. IEEE (2011)

    Google Scholar 

  15. Salimi, R., Motameni, H., Omranpour, H.: Task scheduling with load balancing for computational grid using NSGA-II with fuzzy mutation. In: IEEE International Conference on Parallel Distributed and Grid Computing, pp. 79–84. IEEE (2013)

    Google Scholar 

  16. Tran, K.D.: An improved non-dominated sorting genetic algorithm-II (ANSGA-II) with adaptable parameters. Int. J. Intell. Syst. Technol. Appl. 7(4), 347–369 (2009)

    MathSciNet  Google Scholar 

  17. Schott, J.R.: Fault tolerant design using single and multicriteria genetic algorithm optimization. Cell. Immunol. 37(1), 1–13 (1995)

    Google Scholar 

  18. Philip, F.: Sums of squares of Krawtchouk polynomials, Catalan numbers, and some algebras over the Boolean lattice. Int. J. Math. Comput. Sci. 12(1), 65–83 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Andreas, B., Anargyros, F.: On octonion polynomial equations. Int. J. Math. Comput. Sci. 11(2), 59–73 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Lei, Y., Gong, M., Jiao, L., Shi, J.: An adaptive coevolutionary memetic algorithm for examination timetabling problems. Int. J. Bio-inspired Comput. 10(4), 248–257 (2017)

    Article  Google Scholar 

  21. Lydia, B., Ta Minh, T.: A clustering algorithm based on elitist evolutionary approach. Int. J. Bio-inspired Comput. 10(4), 248–257 (2017)

    Article  Google Scholar 

  22. Badih, G.: Half a dozen famous unsolved problems in mathematics with a dozen suggestions on how to try to solve them. Int. J. Bio-inspired Comput. 11(2), 257–273 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Zhang, M., Wang, H., Cui, Z., Chen, J.: Hybrid multi-objective cuckoo search with dynamical local search. Memet. Comput. 10(2), 199–208 (2017). https://doi.org/10.1007/s12293-017-0237-2

    Article  Google Scholar 

  24. Henrik, S.: Methods for the summation of infinite series. Int. J. Math. Comput. Sci. 11(2), 109–113 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

The paper is supported by the Natural Science Foundation of Shanxi Province under Grant No. 201601D011045, and Graduate Educational Innovation Project of Shanxi Province under Grant No. 2017SY075.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihua Cui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Zhu, Z., Zhang, M., Cui, Z., Cai, X. (2018). A New Selection Without Replacement for Non-dominated Sorting Genetic Algorithm II. In: Huang, DS., Gromiha, M., Han, K., Hussain, A. (eds) Intelligent Computing Methodologies. ICIC 2018. Lecture Notes in Computer Science(), vol 10956. Springer, Cham. https://doi.org/10.1007/978-3-319-95957-3_86

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95957-3_86

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95956-6

  • Online ISBN: 978-3-319-95957-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics