[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Assessment and Rating of Movement Impairment in Parkinson’s Disease Using a Low-Cost Vision-Based System

  • Conference paper
  • First Online:
Intelligent Computing Methodologies (ICIC 2018)

Abstract

Assessment and rating of Parkinson’s Disease (PD) are commonly based on the medical observation of several clinical manifestations, including the analysis of motor activities. In particular, medical specialists refer to the Movement Disorder Society – sponsored revision of Unified Parkinson’s Disease Rating Scale (MDS-UPDRS), the most widely used scale for rating PD. The UPDRS scale also considers the observation of some subtle motor phenomena that are either difficult to capture with human eyes or subjectively considerate abnormal. In this scenario, an automatic system able to capture the considered motor exercises and rate the PD severity could be used as a support system for the healthcare sector. In this work, we implemented a simple and low-cost clinical tool that can extract motor features of two main exercises required by the UPDRS scale (the finger tapping and the foot tapping) to classify and rate the PD severity. Sixty two participants were enrolled for the purpose of the present study: thirty three PD patients and twenty nine healthy paired subjects. Results showed that an SVM using the features extracted by both considered exercises was able to classify healthy subjects and PD patients with great performances by reaching 87.1% of accuracy. The results of the classification between mild and moderate PD patients indicated that the foot tapping features were the most representative ones to discriminate (81.0% of accuracy). We can conclude that developed tool can support medical specialists in the assessment and rating of PD patients in a real clinical scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Memedi, M., Sadikov, A., Groznik, V., Žabkar, J., Možina, M., Bergquist, F., Johansson, A., Haubenberger, D., Nyholm, D.: Automatic spiral analysis for objective assessment of motor symptoms in Parkinson’s disease. Sensors 15, 23727–23744 (2015). https://doi.org/10.3390/s150923727

    Article  Google Scholar 

  2. Goetz, C.G., Tilley, B.C., Shaftman, S.R., Stebbins, G.T., Fahn, S., Martinez-Martin, P., Poewe, W., Sampaio, C., Stern, M.B., Dodel, R.: Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov. Disord. 23, 2129–2170 (2008)

    Article  Google Scholar 

  3. Goetz, C.G., Poewe, W., Rascol, O., Sampaio, C., Stebbins, G.T., Counsell, C., Giladi, N., Holloway, R.G., Moore, C.G., Wenning, G.K., Yahr, M.D., Seidl, L.: Movement Disorder Society Task Force report on the Hoehn and Yahr staging scale: status and recommendations. Mov. Disord. 19, 1020–1028 (2004). https://doi.org/10.1002/mds.20213

    Article  Google Scholar 

  4. Djuric-Jovicic, M.D., Jovicic, N.S., Radovanovic, S.M., Stankovic, I.D., Popovic, M.B., Kostic, V.S.: Automatic identification and classification of freezing of gait episodes in Parkinson’s disease patients. IEEE Trans. Neural Syst. Rehabil. Eng. 22, 685–694 (2014). https://doi.org/10.1109/TNSRE.2013.2287241

    Article  Google Scholar 

  5. Tripoliti, E.E., Tzallas, A.T., Tsipouras, M.G., Rigas, G., Bougia, P., Leontiou, M., Konitsiotis, S., Chondrogiorgi, M., Tsouli, S., Fotiadis, D.I.: Automatic detection of freezing of gait events in patients with Parkinson’s disease. Comput. Methods Programs Biomed. 110, 12–26 (2013). https://doi.org/10.1016/j.cmpb.2012.10.016

    Article  Google Scholar 

  6. Bortone, I., et al.: A novel approach in combination of 3D gait analysis data for aiding clinical decision-making in patients with Parkinson’s Disease. In: Huang, D.-S., Jo, K.-H., Figueroa-García, J.C. (eds.) ICIC 2017. LNCS, vol. 10362, pp. 504–514. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63312-1_44

    Chapter  Google Scholar 

  7. Tsanas, A., Little, M.A., McSharry, P.E., Ramig, L.O.: Accurate telemonitoring of parkinsons disease progression by noninvasive speech tests. IEEE Trans. Biomed. Eng. 57, 884–893 (2010). https://doi.org/10.1109/TBME.2009.2036000

    Article  Google Scholar 

  8. Mellone, S., Palmerini, L., Cappello, A., Chiari, L.: Hilbert-Huang-based tremor removal to assess postural properties from accelerometers. IEEE Trans. Biomed. Eng. 58, 1752–1761 (2011). https://doi.org/10.1109/TBME.2011.2116017

    Article  Google Scholar 

  9. Heldman, D.A., Espay, A.J., LeWitt, P.A., Giuffrida, J.P.: Clinician versus machine: reliability and responsiveness of motor endpoints in Parkinson’s disease. Park. Relat. Disord. 20, 590–595 (2014). https://doi.org/10.1016/j.parkreldis.2014.02.022

    Article  Google Scholar 

  10. Rigas, G., Tzallas, A.T., Tsipouras, M.G., Bougia, P., Tripoliti, E.E., Baga, D., Fotiadis, D.I., Tsouli, S.G., Konitsiotis, S.: Assessment of tremor activity in the parkinsons disease using a set of wearable sensors. IEEE Trans. Inf Technol. Biomed. 16, 478–487 (2012). https://doi.org/10.1109/TITB.2011.2182616

    Article  Google Scholar 

  11. Bevilacqua, V., et al.: A RGB-D sensor based tool for assessment and rating of movement disorders. In: Duffy, V., Lightner, N. (eds.) AHFE 2017. AISC, vol. 590, pp. 110–118. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-60483-1_12

    Chapter  Google Scholar 

  12. Salarian, A., Russmann, H., Wider, C., Burkhard, P.R., Vingerhoets, F.J.G., Aminian, K.: Quantification of tremor and bradykinesia in Parkinson’s disease using a novel ambulatory monitoring system. IEEE Trans. Biomed. Eng. 54, 313–322 (2007). https://doi.org/10.1109/TBME.2006.886670

    Article  Google Scholar 

  13. Dai, H., Lin, H., Lueth, T.C.: Quantitative assessment of parkinsonian bradykinesia based on an inertial measurement unit. Biomed. Eng. Online 14, 68 (2015). https://doi.org/10.1186/s12938-015-0067-8

    Article  Google Scholar 

  14. Griffiths, R.I., Kotschet, K., Arfon, S., Xu, Z.M., Johnson, W., Drago, J., Evans, A., Kempster, P., Raghav, S., Horne, M.K.: Automated assessment of bradykinesia and dyskinesia in Parkinson’s disease. J. Parkinsons Dis. 2, 47–55 (2012). https://doi.org/10.3233/JPD-2012-11071

    Article  Google Scholar 

  15. Keijsers, N.L.W., Horstink, M.W.I.M., Gielen, S.C.A.M.: Automatic assessment of levodopa-induced dyskinesias in daily life by neural networks. Mov. Disord. 18, 70–80 (2003). https://doi.org/10.1002/mds.10310

    Article  Google Scholar 

  16. Lopane, G., Mellone, S., Chiari, L., Cortelli, P., Calandra-Buonaura, G., Contin, M.: Dyskinesia detection and monitoring by a single sensor in patients with Parkinson’s disease. Mov. Disord. 30, 1267–1271 (2015). https://doi.org/10.1002/mds.26313

    Article  Google Scholar 

  17. Saunders-Pullman, R., Derby, C., Stanley, K., Floyd, A., Bressman, S., Lipton, R.B., Deligtisch, A., Severt, L., Yu, Q., Kurtis, M., Pullman, S.L.: Validity of spiral analysis in early Parkinson’s disease. Mov. Disord. 23, 531–537 (2008)

    Article  Google Scholar 

  18. Westin, J., Ghiamati, S., Memedi, M., Nyholm, D., Johansson, A., Dougherty, M., Groth, T.: A new computer method for assessing drawing impairment in Parkinson’s disease. J. Neurosci. Methods 190, 143–148 (2010). https://doi.org/10.1016/j.jneumeth.2010.04.027

    Article  Google Scholar 

  19. Liu, X., Carroll, C.B., Wang, S.Y., Zajicek, J., Bain, P.G.: Quantifying drug-induced dyskinesias in the arms using digitised spiral-drawing tasks. J. Neurosci. Methods 144, 47–52 (2005). https://doi.org/10.1016/j.jneumeth.2004.10.005

    Article  Google Scholar 

  20. Loconsole, C., et al.: Computer vision and EMG-based handwriting analysis for classification in Parkinson’s disease. In: Huang, D.-S., Jo, K.-H., Figueroa-García, J.C. (eds.) ICIC 2017. LNCS, vol. 10362, pp. 493–503. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63312-1_43

    Chapter  Google Scholar 

  21. Bevilacqua, V., Salatino, A.A., Di Leo, C., Tattoli, G., Buongiorno, D., Signorile, D., Babiloni, C., Del Percio, C., Triggiani, A.I., Gesualdo, L.: Advanced classification of Alzheimer’s disease and healthy subjects based on EEG markers. In: Proceedings of the International Joint Conference on Neural Networks (2015). https://doi.org/10.1109/ijcnn.2015.7280463

  22. Buongiorno, D., Barsotti, M., Sotgiu, E., Loconsole, C., Solazzi, M., Bevilacqua, V., Frisoli, A.: A neuromusculoskeletal model of the human upper limb for a myoelectric exoskeleton control using a reduced number of muscles. In: 2015 IEEE World Haptics Conference (WHC), pp. 273–279 (2015). https://doi.org/10.1109/whc.2015.7177725

  23. Bevilacqua, V., Mastronardi, G., Piscopo, G.: Evolutionary approach to inverse planning in coplanar radiotherapy. Image Vis. Comput. 25, 196–203 (2007). https://doi.org/10.1016/j.imavis.2006.01.027

    Article  MATH  Google Scholar 

  24. Menolascina, F., Bellomo, D., Maiwald, T., Bevilacqua, V., Ciminelli, C., Paradiso, A., Tommasi, S.: Developing optimal input design strategies in cancer systems biology with applications to microfluidic device engineering. BMC Bioinf. 10, S4 (2009). https://doi.org/10.1186/1471-2105-10-S12-S4

    Article  Google Scholar 

  25. Menolascina, F., Tommasi, S., Paradiso, A., Cortellino, M., Bevilacqua, V., Mastronardi, G.: Novel data mining techniques in aCGH based breast cancer subtypes profiling: the biological perspective. In: 2007 IEEE Symposium on Computational Intelligence and Bioinformatics and Computational Biology, CIBCB 2007, pp. 9–16 (2007). https://doi.org/10.1109/cibcb.2007.4221198

  26. Bevilacqua, V., Tattoli, G., Buongiorno, D., Loconsole, C., Leonardis, D., Barsotti, M., Frisoli, A., Bergamasco, M.: A novel BCI-SSVEP based approach for control of walking in virtual environment using a convolutional neural network. In: Proceedings of the International Joint Conference on Neural Networks (2014). https://doi.org/10.1109/ijcnn.2014.6889955

  27. Manghisi, V.M., Uva, A.E., Fiorentino, M., Bevilacqua, V., Trotta, G.F., Monno, G.: Real time RULA assessment using kinect v2 sensor. Appl. Ergon. 65, 481–491 (2017). https://doi.org/10.1016/j.apergo.2017.02.015

    Article  Google Scholar 

  28. Bevilacqua, V., et al.: Retinal Fundus Biometric Analysis for Personal Identifications. In: Huang, D.-S., Wunsch, D.C., Levine, D.S., Jo, K.-H. (eds.) ICIC 2008. LNCS (LNAI), vol. 5227, pp. 1229–1237. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85984-0_147

    Chapter  Google Scholar 

  29. Kanjilal, P.P., Palit, S., Saha, G.: Fetal ECG extraction from single-channel maternal ECG using singular value decomposition. IEEE Trans. Biomed. Eng. 44, 51–59 (1997). https://doi.org/10.1109/10.553712

    Article  Google Scholar 

Download references

Acknowledgment

This work has been funded from the Italian project ROBOVIR (BRIC-INAIL-2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitoantonio Bevilacqua .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Buongiorno, D. et al. (2018). Assessment and Rating of Movement Impairment in Parkinson’s Disease Using a Low-Cost Vision-Based System. In: Huang, DS., Gromiha, M., Han, K., Hussain, A. (eds) Intelligent Computing Methodologies. ICIC 2018. Lecture Notes in Computer Science(), vol 10956. Springer, Cham. https://doi.org/10.1007/978-3-319-95957-3_82

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95957-3_82

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95956-6

  • Online ISBN: 978-3-319-95957-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics