[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Classification of Foetal Distress and Hypoxia Using Machine Learning Approaches

  • Conference paper
  • First Online:
Intelligent Computing Methodologies (ICIC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10956))

Included in the following conference series:

Abstract

Foetal distress and hypoxia (oxygen deprivation) is considered as a serious condition and one of the main factors for caesarean section in the obstetrics and Gynecology department. It is the third most common cause of death in new-born babies. Many foetuses that experienced some sort of hypoxic effects can develop series risks including damage to the cells of the central nervous system that may lead to life-long disability (cerebral palsy) or even death. Continuous labour monitoring is essential to observe the foetal well being. Foetal surveillance by monitoring the foetal heart rate with a cardiotocography is widely used. Despite the indication of normal results, these results are not reassuring, and a small proportion of these foetuses are actually hypoxic. In this paper, machine-learning algorithms are utilized to classify foetuses which are experiencing oxygen deprivation using PH value (a measure of hydrogen ion concentration of blood used to specify the acidity or alkalinity) and Base Deficit of extra cellular fluid level (a measure of the total concentration of blood buffer base that indicates the metabolic acidosis or compensated respiratory alkalosis) as indicators of respiratory and metabolic acidosis, respectively, using open source partum clinical data obtained from Physionet. Six well know machine learning classifier models are utilised in our experiments for the evaluation; each model was presented with a set of selected features derived from the clinical data. Classifier’s evaluation is performed using the receiver operating characteristic curve analysis, area under the curve plots, as well as the confusion matrix. Our simulation results indicate that machine-learning algorithms provide viable methods that could delivery improvements over conventional analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Talaulikar, V.S., Arulkumaran, S.: Maternal, perinatal and long-term outcomes after assisted reproductive techniques (ART): implications for clinical practice. Eur. J. Obstet. Gynaecol. Reprod. Biol. 170(1), 13–19 (2013)

    Article  Google Scholar 

  2. Bobrow, C.S., Soothill, P.W.: Causes and consequences of fetal acidosis. Arch. Dis. Child. Fetal Neonatal Edition 80(3), F246–F249 (1999)

    Article  Google Scholar 

  3. Hasan, M.A., Reaz, M.B.I., Ibrahimy, M.I., Hussain, M.S., Uddin, J.: Detection and processing techniques of FECG signal for fetal monitoring. Biol. Proced. Online 11(1), 263 (2009)

    Article  Google Scholar 

  4. Talaulikar, V.S., Arulkumaran, S.: Persistent challenge of intrapartum fetal heart rate monitoring. Dasgupta’s Recent Adv. Obstet. Gynecol. 9, 68 (2012)

    Google Scholar 

  5. Wiberg-Itzel, E., Lipponer, C., Norman, M., Herbst, A., Prebensen, D., Hansson, A., Bryngelsson, A.L., Christoffersson, M., Sennström, M., Wennerholm, U.B., Nordström, L.: Determination of pH or lactate in fetal scalp blood in management of intrapartum fetal distress: randomised controlled multicentre trial. BMJ 336(7656), 1284–1287 (2008)

    Article  Google Scholar 

  6. Vintzileos, A.M., Nochimson, D.J., Antsaklis, A., Varvarigos, I., Guzman, I., Knuppel, R.A.: Comparison of intrapartum electronic fetal heart monitoring versus intermittent auscultation in detecting fetal acidemia at birth. Am. J. Obstet. Gynecol. 173, 1021–1024 (1995)

    Article  Google Scholar 

  7. Ingemarsson, I., Ingemarsson, E., Spencer, J.A.D.: Fetal Heart Rate Monitoring. A Practical Guide. Oxford University Press, Oxford (1993)

    Google Scholar 

  8. Bretscher, J., Saling, E.: pH values in the human fetus during labor. Am. J. Obstet. Gynecol. 97, 906–911 (1967)

    Article  Google Scholar 

  9. Tuffnell, D., Haw, W.L., Wilkinson, K.: How long does a fetal scalp blood sample take? BJOG 113, 332–334 (2006)

    Article  Google Scholar 

  10. Goldaber, K.G., Gilstrap, L.C., Leveno, K.J., Dags, J.S., McIntire, D.D.: Pathologic fetal acidemia. Obstet. Gynecol. 78, 1103–1107 (1991)

    Google Scholar 

  11. James, L.S., Weisbrot, I.M., Prince, C.E., Holaday, D.A., Apgar, V.: The acid-base status of human infants in relation to birth asphyxia and the onset of respiration. J. Paediatr. 52(4), 379–394 (1958)

    Article  Google Scholar 

  12. Westgren, M., Kuger, K., Ek, S., Grunevald, C., Kublickas, M., Naka, K., et al.: Lactate compared with pH analysis at fetal scalp blood sampling: a prospective randomised study. Br. J. Obstet. Gynaecol. 105, 29–33 (1998)

    Article  Google Scholar 

  13. Malin, G.L., Morris, R.K., Khan, K.S.: Strength of association between umbilical cord pH and perinatal and long-term outcomes: systematic review and meta-analysis. BMJ 340, c1471 (2010)

    Article  Google Scholar 

  14. ACOG Committee on Obstetric Practice: ACOG Committee Opinion No. 348, November 2006: Umbilical cord blood gas and acid-base analysis. Obstetrics and gynaecology, 108(5), p. 1319 (2006)

    Google Scholar 

  15. https://www.abclawcenters.com/practice-areas/diagnostic-tests/hypoxic-ischemic-encephalopathy-and-umbilical-cord-blood-gases/

  16. Yeh, P., Emary, K., Impey, L.: The relationship between umbilical cord arterial pH and serious adverse neonatal outcome: analysis of 51 519 consecutive validated samples. BJOG: Int. J. Obstet. Gynaecol. 119(7), 824–831 (2012)

    Article  Google Scholar 

  17. Strachan, B.K., Sahota, D.S., Wijngaarden, W.J., James, D.K., Chang, A.M.: Computerised analysis of the fetal heart rate and relation to acidaemia at delivery. BJOG Int. J. Obstet. Gynaecol. 108(8), 848–852 (2001)

    Article  Google Scholar 

  18. Georgieva, A., Payne, S.J., Moulden, M., Redman, C.W.: Artificial neural networks applied to fetal monitoring in labour. Neural Comput. Appl. 22(1), 85–93 (2013)

    Article  Google Scholar 

  19. Jeżewski, M., Czabański, R., Wróbel, J., Horoba, K.: Analysis of extracted cardiotocographic signal features to improve automated prediction of fetal outcome. Biocybern. Biomed. Eng. 30(4), 29–47 (2010)

    Google Scholar 

  20. Keith, R.D., Beckley, S., Garibaldi, J.M., Westgate, J.A., Ifeachor, E.C., Greene, K.R.: A multicentre comparative study of 17 experts and an intelligent computer system for managing labour using the cardiotocogram. BJOG Int. J. Obstet. Gynaecol. 102(9), 688–700 (1995)

    Article  Google Scholar 

  21. Magenes, G., Signorini, M.G., Arduini, D.: Classification of cardiotocographic records by neural networks. In: Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, IJCNN 2000, vol. 3, pp. 637–641. IEEE (2000)

    Google Scholar 

  22. Abdillah, A.A.: Suwarno: diagnosis of diabetes using support vector machines with radial basis function kernels. Int. J. Technol. 7(5), 849–858 (2016)

    Article  Google Scholar 

  23. Georgoulas, G., Stylios, C., Groumpos, P.: Feature extraction and classification of foetal heart rate using wavelet analysis and support vector machines. Int. J. Artif. Intell. Tools 15(03), 411–432 (2006)

    Article  Google Scholar 

  24. Georgoulas, G., Gavrilis, D., Tsoulos, I.G., Stylios, C., Bernardes, J., Groumpos, P.P.: Novel approach for fetal heart rate classification introducing grammatical evolution. Biomed. Signal Process. Control 2(2), 69–79 (2007)

    Article  Google Scholar 

  25. Warrick, P.A., Hamilton, E.F., Kearney, R.E., Precup, D.: Classification of normal and hypoxic fetuses using system identification from intrapartum cardiotocography. IEEE Trans. Biomed. Eng. 57, 771–779 (2010)

    Article  Google Scholar 

  26. Spilka, J., Chudáček, V., Koucký, M., Lhotská, L., Huptych, M., Janků, P., Georgoulas, G., Stylios, C.: Using nonlinear features for fetal heart rate classification. Biomed. Signal Process. Control 7(4), 350–357 (2012)

    Article  Google Scholar 

  27. https://physionet.org/physiobank/database/ctu-uhb-ctgdb/

  28. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Annals of statistics, pp. 1189–1232 (2001)

    Google Scholar 

  29. Hastie, T., Qian, J.: Glmnet Vignette (2014)

    Google Scholar 

  30. Altman, N.S.: An introduction to kernel and nearest-neighbour nonparametric regression. Am. Stat. 46(3), 175–185 (1992)

    Google Scholar 

  31. Liaw, A., Wiener, M.: Classification and regression by random Forest. R News 2(3), 18–22 (2002)

    Google Scholar 

  32. Breiman, L.: Random Forests. Statistics Department, University of California, Machine learning (2001)

    MATH  Google Scholar 

  33. Bradley, A.P.: The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn. 30(7), 1145–1159 (1997)

    Article  Google Scholar 

  34. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Burlington (2005)

    Google Scholar 

  35. Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  36. Noreen, E.W.: Computer intensive methods for hypothesis testing: An introduction (1989)

    Google Scholar 

  37. Sykes, G.S., Molloy, P.M., Johnson, P., Stirrat, G.M., Turnbull, A.C.: Fetal distress and the condition of newborn infants. Br. Med. J. (Clin. Res. Ed.) 287(6397), 943–945 (1983)

    Article  Google Scholar 

  38. Steer, P.J.: Fetal monitoring—Present and future. Eur. J. Obst. Gynecol. Reprod. Biol. 24(2), 112–117 (1987)

    Article  Google Scholar 

  39. Berg, P., Schmidt, S., Gesche, J., Saling, E.: Fetal distress and the condition of the newborn using cardiotocography and fetal blood analysis during labour. BJOG Int. J. Obst. Gynecol. 94(1), 72–75 (1987)

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thanks Liverpool John Moores University for the scholarship to complete this research. In addition, this research work was partially supported by Zayed University Research Cluster Award # R18038.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abir Jaafar Hussain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abbas, R., Hussain, A.J., Al-Jumeily, D., Baker, T., Khattak, A. (2018). Classification of Foetal Distress and Hypoxia Using Machine Learning Approaches. In: Huang, DS., Gromiha, M., Han, K., Hussain, A. (eds) Intelligent Computing Methodologies. ICIC 2018. Lecture Notes in Computer Science(), vol 10956. Springer, Cham. https://doi.org/10.1007/978-3-319-95957-3_81

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95957-3_81

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95956-6

  • Online ISBN: 978-3-319-95957-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics