[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

JPEG Image Super-Resolution via Deep Residual Network

  • Conference paper
  • First Online:
Intelligent Computing Methodologies (ICIC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10956))

Included in the following conference series:

Abstract

In many practical scenarios, the images to be super-resolved are not only of low resolution (LR) but also JPEG compressed, while most of the existing super-resolution methods assume compression free LR image inputs. As a result, the JPEG compression artifacts (e.g., blocking artifacts) are often exacerbated in the super-resolved images, leading to unpleasant visual results. In this paper, we address this problem via learning a deep residual convolutional neural network (CNN) that exploits a skips-in-skip connection. More specifically, by increasing the network depth to 31 layers with receptive field of 63 by 63, we train a single CNN model which is able to handle JPEG image super-resolution with various combinations of scale and quality factors, as well as the extreme cases, i.e., image super-resolution with multiple scale factors, and JPEG image deblocking with different quality factors. Our extensive experimental results demonstrate that the proposed deep model can not only yield high resolution (HR) images that are visually more pleasant than those state-of-the-art deblocking and super-resolution methods in a cascaded manner, but also deliver very competitive results with the state-of-the-art super-resolution methods and JPEG deblocking methods in terms of quantitative and qualitative measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: CVPR, pp. 5197–5206. IEEE (2015)

    Google Scholar 

  2. Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse representation. IEEE TIP 19, 2861–2873 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Timofte, R., De Smet, V., Van Gool, L.: A+: adjusted anchored neighborhood regression for fast super-resolution. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9006, pp. 111–126. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16817-3_8

    Chapter  Google Scholar 

  4. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13

    Chapter  Google Scholar 

  5. Xiong, Z., Sun, X., Wu, F.: Robust web image/video super-resolution. IEEE TIP 19, 2017–2028 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Kang, L.W., Hsu, C.-C., Zhuang, B., Lin, C.-W., Yeh, C.-H.: Learning-based joint super-resolution and deblocking for a highly compressed image. IEEE Trans. Multimed. 17, 921–934 (2015)

    Article  Google Scholar 

  7. Singh, A., Porikli, F., Ahuja, N.: Super-resolving noisy images. In: CVPR, pp. 2846–2853 (2014)

    Google Scholar 

  8. LeCun, Y., Kavukcuoglu, K., Farabet, C., et al.: Convolutional networks and applications in vision. In: ISCAS, pp. 253–256 (2010)

    Google Scholar 

  9. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS, pp. 1097–1105 (2012)

    Google Scholar 

  10. Xu, L., Ren, J.S., Liu, C., Jia, J.: Deep convolutional neural network for image deconvolution. In: NIPS, pp. 1790–1798 (2014)

    Google Scholar 

  11. Bruna, J., Sprechmann, P., LeCun, Y.: Super-resolution with deep convolutional sufficient statistics, arXiv preprint arXiv:1511.05666 (2015)

  12. Dong, C., Deng, Y., Loy, C.C., Tang, X.: Compression artifacts reduction by a deep convolutional network. In: ICCV, pp. 576–584 (2015)

    Google Scholar 

  13. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)

    Google Scholar 

  14. Rothe, R., Timofte, R., Van Gool, L.: Efficient regression priors for reducing image compression artifacts. In: ICIP, pp. 1543–1547 (2015)

    Google Scholar 

  15. Kwon, Y., Kim, K.I., Tompkin, J., Kim, J.H., Theobalt, C.: Efficient learning of image super-resolution and compression artifact removal with semi-local gaussian processes. IEEE TPAMI 37, 1792–1805 (2015)

    Article  Google Scholar 

  16. Chen, Y., Pock, T.: Trainable nonlinear reaction diffusion: a flexible framework for fast and effective image restoration, arXiv preprint arXiv:1508.02848 (2015)

  17. Kim, J., Lee, J.K., Lee, J.K.: Accurate image super-resolution using very deep convolutional networks, arXiv preprint arXiv:1511.04587 (2015)

  18. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift, arXiv preprint arXiv:1502.03167 (2015)

  19. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition, arXiv preprint arXiv:1512.03385 (2015)

  20. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks, arXiv preprint arXiv:1603.05027 (2016)

    Chapter  Google Scholar 

  21. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv:1409.1556 (2014)

  22. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: CVPR, pp. 1–9 (2015)

    Google Scholar 

  23. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: ICCV, pp. 1026–1034 (2015)

    Google Scholar 

  24. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE TPAMI 38, 295–307 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zifei Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, F., Yan, Z., Xiao, G., Zhang, K., Zuo, W. (2018). JPEG Image Super-Resolution via Deep Residual Network. In: Huang, DS., Gromiha, M., Han, K., Hussain, A. (eds) Intelligent Computing Methodologies. ICIC 2018. Lecture Notes in Computer Science(), vol 10956. Springer, Cham. https://doi.org/10.1007/978-3-319-95957-3_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95957-3_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95956-6

  • Online ISBN: 978-3-319-95957-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics