[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Texture Descriptors for Classifying Sparse, Irregularly Sampled Optical Endomicroscopy Images

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2018)

Abstract

Optical endomicroscopy (OEM) is a novel real-time imaging technology that provides endoscopic images at the microscopic level. Clinical OEM procedures generate large datasets making their post procedural analysis a subjective and laborious task. There has been effort to automatically classify OEM frame sequences into relevant classes in aid of a fast and reliable diagnosis. Most existing classification approaches adopt established texture metrics, such as Local Binary Patterns (LBPs) derived from the regularly sampled grid images. However, due to the nature of image transmission through coherent fibre bundles, raw OEM data are sparsely and irregularly sampled, post-processed to a regularly sampled grid image format. This paper adapts Local Binary Patterns, a commonly used image texture descriptor, taking into consideration the sparse, irregular sampling imposed by the imaging fibre bundle on OEM images. The performance of Sparse Irregular Local Binary Patterns (SILBP) is assessed in conjunction with widely used classifiers, including Support Vector Machines, Random Forests and Linear Discriminant Analysis, for the detection of uninformative frames (i.e. noise and motion-artefacts) within pulmonary OEM frame sequences. Uninformative frames can comprise a considerable proportion of a dataset, increasing the resources required to analyse the data and impacting on any automated quantification analysis. SILBPs achieve comparable performance to the optimal LBPs (>92% overall accuracy), while employing <13% of the associated data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pierce, M., Yu, D., Richards-Kortum, R.: High-resolution fiber-optic microendoscopy for in situ cellular imaging. J. Vis. Exp. (JoVE) (47), 2306 (2011)

    Google Scholar 

  2. Krstajić, N., et al.: Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue. J. Biomed. Opt. 21(4), 046009 (2016)

    Article  Google Scholar 

  3. Thiberville, L., Moreno-Swirc, S., Vercauteren, T., Peltier, E., Cavé, C., Bourg Heckly, G.: In vivo imaging of the bronchial wall microstructure using fibered confocal fluorescence microscopy. Am. J. Respir. Crit. Care Med. 175(1), 22–31 (2007)

    Article  Google Scholar 

  4. Aslam, T., et al.: Optical molecular imaging of lysyl oxidase activity - detection of active fibrogenesis in human lung tissue. Chem. Sci. 6, 4946–4953 (2015)

    Article  Google Scholar 

  5. Thiberville, L., et al.: In vivo confocal fluorescence endomicroscopy of lung cancer. J. Thorac. Oncol. 4(9), S48–S51 (2009)

    Google Scholar 

  6. Thiberville, L., et al.: Human in vivo fluorescence microimaging of the alveolar ducts and sacs during bronchoscopy. Eur. Respir. J. 33(5), 974–985 (2009)

    Article  Google Scholar 

  7. Thiberville, L., et al.: Confocal fluorescence endomicroscopy of the human airways. Proc. Am. Thorac. Soc. 6(5), 444–449 (2009)

    Article  Google Scholar 

  8. Newton, R.C., Kemp, S.V., Yang, G.-Z., Elson, D.S., Darzi, A., Shah, P.L.: Imaging parenchymal lung diseases with confocal endomicroscopy. Respir. Med. 106(1), 127–137 (2012)

    Article  Google Scholar 

  9. Avlonitis, N., et al.: Highly specific, multi-branched fluorescent reporters for analysis of human neutrophil elastase. Org. Biomol. Chem. 11(26), 4414–4418 (2013)

    Article  Google Scholar 

  10. Akram, A.R., et al.: A labelled-ubiquicidin antimicrobial peptide for immediate in situ optical detection of live bacteria in human alveolar lung tissue. Chem. Sci. 6(12), 6971–6979 (2015)

    Article  Google Scholar 

  11. Perperidis, A., et al.: Automated detection of uninformative frames in pulmonary optical endomicroscopy (OEM). IEEE Trans. Biomed. Eng. 64(1), 87–98 (2016)

    Article  Google Scholar 

  12. Desir, C., Petitjean, C., Heutte, L., Thiberville, L., Salaün, M.: An SVM-based distal lung image classification using texture descriptors. Comput. Med. Imaging Graph. 36(4), 264–270 (2012)

    Article  Google Scholar 

  13. Saint-Réquier, A., et al.: Characterization of endomicroscopic images of the distal lung for computer-aided diagnosis. In: Huang, D.-S., Jo, K.-H., Lee, H.-H., Kang, H.-J., Bevilacqua, V. (eds.) ICIC 2009. LNCS, vol. 5754, pp. 994–1003. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04070-2_105

    Chapter  Google Scholar 

  14. Koujan, M.R., et al.: Multi-class classification of pulmonary endomicroscopic images. In: IEEE International Symposium on Biomedical Imaging (ISBI), pp. 1574–1577 (2018)

    Google Scholar 

  15. Vercauteren, T.: Image Registration and Mosaicing for Dynamic In Vivo Fibered Confocal Microscopy. Mines ParisTech, Paris (2008)

    Google Scholar 

  16. Werghi, N., Berretti, S., Del Bimbo, A., Pala, P.: The mesh-LBP: computing local binary patterns on discrete manifolds. In: IEEE International Conference on Computer Vision Workshops, pp. 562–569 (2013)

    Google Scholar 

  17. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  18. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. SMC 3(6), 610–621 (1973)

    Article  Google Scholar 

  19. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines: and Other Kernel-Based Learning Methods. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  20. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  21. Mika, S., Ratsch, G., Weston, J., Scholkopf, B., Mullers, K.R.: Fisher discriminant analysis with kernels. In: Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop, pp. 41–48 (1999)

    Google Scholar 

  22. Martinez, A.M., Kak, A.C.: PCA versus LDA. IEEE Trans. Pattern Anal. Mach. Intell. 23(2), 228–233 (2001)

    Article  Google Scholar 

  23. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Engineering & Physical Sciences Research Council (UK) for the support via EP/K03197X/1. AA is a supported by Cancer Research, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonios Perperidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leonovych, O. et al. (2018). Texture Descriptors for Classifying Sparse, Irregularly Sampled Optical Endomicroscopy Images. In: Nixon, M., Mahmoodi, S., Zwiggelaar, R. (eds) Medical Image Understanding and Analysis. MIUA 2018. Communications in Computer and Information Science, vol 894. Springer, Cham. https://doi.org/10.1007/978-3-319-95921-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95921-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95920-7

  • Online ISBN: 978-3-319-95921-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics