Abstract
Optical endomicroscopy (OEM) is a novel real-time imaging technology that provides endoscopic images at the microscopic level. Clinical OEM procedures generate large datasets making their post procedural analysis a subjective and laborious task. There has been effort to automatically classify OEM frame sequences into relevant classes in aid of a fast and reliable diagnosis. Most existing classification approaches adopt established texture metrics, such as Local Binary Patterns (LBPs) derived from the regularly sampled grid images. However, due to the nature of image transmission through coherent fibre bundles, raw OEM data are sparsely and irregularly sampled, post-processed to a regularly sampled grid image format. This paper adapts Local Binary Patterns, a commonly used image texture descriptor, taking into consideration the sparse, irregular sampling imposed by the imaging fibre bundle on OEM images. The performance of Sparse Irregular Local Binary Patterns (SILBP) is assessed in conjunction with widely used classifiers, including Support Vector Machines, Random Forests and Linear Discriminant Analysis, for the detection of uninformative frames (i.e. noise and motion-artefacts) within pulmonary OEM frame sequences. Uninformative frames can comprise a considerable proportion of a dataset, increasing the resources required to analyse the data and impacting on any automated quantification analysis. SILBPs achieve comparable performance to the optimal LBPs (>92% overall accuracy), while employing <13% of the associated data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Pierce, M., Yu, D., Richards-Kortum, R.: High-resolution fiber-optic microendoscopy for in situ cellular imaging. J. Vis. Exp. (JoVE) (47), 2306 (2011)
Krstajić, N., et al.: Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue. J. Biomed. Opt. 21(4), 046009 (2016)
Thiberville, L., Moreno-Swirc, S., Vercauteren, T., Peltier, E., Cavé, C., Bourg Heckly, G.: In vivo imaging of the bronchial wall microstructure using fibered confocal fluorescence microscopy. Am. J. Respir. Crit. Care Med. 175(1), 22–31 (2007)
Aslam, T., et al.: Optical molecular imaging of lysyl oxidase activity - detection of active fibrogenesis in human lung tissue. Chem. Sci. 6, 4946–4953 (2015)
Thiberville, L., et al.: In vivo confocal fluorescence endomicroscopy of lung cancer. J. Thorac. Oncol. 4(9), S48–S51 (2009)
Thiberville, L., et al.: Human in vivo fluorescence microimaging of the alveolar ducts and sacs during bronchoscopy. Eur. Respir. J. 33(5), 974–985 (2009)
Thiberville, L., et al.: Confocal fluorescence endomicroscopy of the human airways. Proc. Am. Thorac. Soc. 6(5), 444–449 (2009)
Newton, R.C., Kemp, S.V., Yang, G.-Z., Elson, D.S., Darzi, A., Shah, P.L.: Imaging parenchymal lung diseases with confocal endomicroscopy. Respir. Med. 106(1), 127–137 (2012)
Avlonitis, N., et al.: Highly specific, multi-branched fluorescent reporters for analysis of human neutrophil elastase. Org. Biomol. Chem. 11(26), 4414–4418 (2013)
Akram, A.R., et al.: A labelled-ubiquicidin antimicrobial peptide for immediate in situ optical detection of live bacteria in human alveolar lung tissue. Chem. Sci. 6(12), 6971–6979 (2015)
Perperidis, A., et al.: Automated detection of uninformative frames in pulmonary optical endomicroscopy (OEM). IEEE Trans. Biomed. Eng. 64(1), 87–98 (2016)
Desir, C., Petitjean, C., Heutte, L., Thiberville, L., Salaün, M.: An SVM-based distal lung image classification using texture descriptors. Comput. Med. Imaging Graph. 36(4), 264–270 (2012)
Saint-Réquier, A., et al.: Characterization of endomicroscopic images of the distal lung for computer-aided diagnosis. In: Huang, D.-S., Jo, K.-H., Lee, H.-H., Kang, H.-J., Bevilacqua, V. (eds.) ICIC 2009. LNCS, vol. 5754, pp. 994–1003. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04070-2_105
Koujan, M.R., et al.: Multi-class classification of pulmonary endomicroscopic images. In: IEEE International Symposium on Biomedical Imaging (ISBI), pp. 1574–1577 (2018)
Vercauteren, T.: Image Registration and Mosaicing for Dynamic In Vivo Fibered Confocal Microscopy. Mines ParisTech, Paris (2008)
Werghi, N., Berretti, S., Del Bimbo, A., Pala, P.: The mesh-LBP: computing local binary patterns on discrete manifolds. In: IEEE International Conference on Computer Vision Workshops, pp. 562–569 (2013)
Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)
Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. SMC 3(6), 610–621 (1973)
Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines: and Other Kernel-Based Learning Methods. Cambridge University Press, Cambridge (2000)
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Mika, S., Ratsch, G., Weston, J., Scholkopf, B., Mullers, K.R.: Fisher discriminant analysis with kernels. In: Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop, pp. 41–48 (1999)
Martinez, A.M., Kak, A.C.: PCA versus LDA. IEEE Trans. Pattern Anal. Mach. Intell. 23(2), 228–233 (2001)
He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)
Acknowledgements
We thank the Engineering & Physical Sciences Research Council (UK) for the support via EP/K03197X/1. AA is a supported by Cancer Research, UK.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Leonovych, O. et al. (2018). Texture Descriptors for Classifying Sparse, Irregularly Sampled Optical Endomicroscopy Images. In: Nixon, M., Mahmoodi, S., Zwiggelaar, R. (eds) Medical Image Understanding and Analysis. MIUA 2018. Communications in Computer and Information Science, vol 894. Springer, Cham. https://doi.org/10.1007/978-3-319-95921-4_17
Download citation
DOI: https://doi.org/10.1007/978-3-319-95921-4_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-95920-7
Online ISBN: 978-3-319-95921-4
eBook Packages: Computer ScienceComputer Science (R0)