Abstract
Fuzzy implications has drawn attention of many authors along the years, as their theoretical features seem to be a useful tool in a fair amount of applications. Meanwhile, functional equations are those in which the unknowns are functions instead of a traditional variable, and within the fuzzy logic, they can be considered generalizations of some tautologies of the classical logic. In this paper we investigate the validity of five functional equations for the class of (T, N)-implications, namely, we have selected the law of importation and four distributivity properties and have studied them in the context of the aforementioned operator.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Baczyński, M., Balasubramaniam, J.: Fuzzy Implications. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69082-5
Baczyński, M.: On the applications of fuzzy implication functions. In: Balas, V.E., Fodor, J., Várkonyiczy, A.R., Dombi, J., Jain, L.C. (eds.) Soft Computing Applications. AISC, vol. 195, pp. 9–10. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-33941-7_4
Baczyński, M., Beliakov, G., Bustince, H., Pradera, A. (eds.): Advances in Fuzzy Implication Functions. Studies in Fuzziness and Soft Computing, vol. 300. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35677-3
Baczynski, M., Jayaram, B., Massanet, S., Torrens, J.: Fuzzy implications: past, present, and future. In: Kacprzyk, J., Pedrycz, W. (eds.) Springer Handbook of Computational Intelligence, pp. 183–202. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-43505-2_12
Bedregal, B.C.: A normal form which preserves tautologies and contradictions in a class of fuzzy logics. J. Algorithms 62(3–4), 135–147 (2007)
Bertoluzza, C.: On the distributivity between t-norms and t-conorms. In: Proceedings of 2nd IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 1993), San Francisco, USA, pp. 140–147 (1993)
Bertoluzza, C., Doldi, V.: On the distributivity between t-norms and t-conorms. Fuzzy Sets Syst. 142, 85–104 (2004)
Bloch, I.: Duality vs. adjunction for fuzzy mathematical morphology and general form of fuzzy erosions and dilations. Fuzzy Sets Syst. 160(13), 1858–1867 (2009)
Bustince, H., Fernández, J., Sanz, J., Baczyński, M., Mesiar, R.: Construction of strong equality index from implication operators. Fuzzy Sets Syst. 211, 15–33 (2013)
Carbonell, M., Mas, M., Suner, J., Torrens, J.: On distributivity and modularity in De Morgan triplets. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 4, 351–368 (1996)
Cruz, A., Bedregal, B.C., Santiago, R.H.N.: On the characterizations of fuzzy implications satisfying I(x, I(y, z)) = I(I(x, y), I(x, z)). Int. J. Approx. Reason. 93, 261–276 (2018)
Dimuro, G.P., Bedregal, B., Santiago, R.H.: On (G, N)-implications derived from grouping functions. Inf. Sci. 279, 1–17 (2014)
Dimuro, G.P., Bedregal, B.C.: On residual implications derived from overlap functions. Inf. Sci. 312, 78–88 (2015)
Dimuro, G.P., Bedregal, B., Bustince, H., Jurio, A., Baczyński, M., Mis, K.: QL-operations and QL-implication functions constructed from tuples (O, G, N) and the generation of fuzzy subsethood and entropy measures. Int. J. Approx. Reason. 82, 170–192 (2017)
Jayaram, B.: On the law of importation \((x\wedge y) \rightarrow z \equiv (x \rightarrow (y \rightarrow z))\) in fuzzy logic. IEEE Trans. Fuzzy Syst. 16(1), 130–144 (2008)
Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht (2000)
Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice Hall, USA (1995)
Mas, M., Monserrat, M., Torrens, J., Trillas, E.: A survey on fuzzy implication functions. IEEE Trans. Fuzzy Syst. 15(6), 1107–1121 (2007)
Mas, M., Monserrat, M., Torrens, J.: The law of importation for discrete implications. Inf. Sci. 179(24), 4208–4218 (2009)
Štěpnička, M., De Baets, B.: Implication-based models of monotone fuzzy rule bases. Fuzzy Sets Syst. 232, 134–155 (2013)
Pradera, A., Beliakov, G., Bustince, H., De Baets, B.: A review of the relationships between implication, negation and aggregation functions from the point of view of material implication. Inf. Sci. 329, 357–80 (2016)
Pinheiro, J., Bedregal, B., Santiago, R.H., Santos, H.: (T, N)-implications. In: 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–6 (2017)
Pinheiro, J., Bedregal, B., Santiago, R.H., Santos, H.: A study of (T, N)-implications and its use to construct a new class of fuzzy subsethood measure. Int. J. Approx. Reason. 97, 1–16 (2018)
Reiser, R., Bedregal, B., Baczyński, M.: Aggregating fuzzy implications. Inf. Sci. 253, 126–146 (2013)
Santos, H.S.: A new class of fuzzy subsethood measures. Ph.D. thesis, Universidade Federal do Rio Grande do Norte, Natal (2016)
Santos, H., Bedregal, B., Dimuro, G.P., Bustince, H.: Penalty functions constructed from QL subsethood measures. In: 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–5 (2017)
Yager, R.R.: On some new classes of implication operators and their role in approximate reasoning. Inf. Sci. 167(1–4), 193–216 (2004)
Acknowledgments
This work was partially supported by the Brazilian funding agency CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), under the processes No. 306970/2013-9 and 307781/2016-0.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Pinheiro, J., Bedregal, B., Santiago, R., Santos, H., Dimuro, G.P. (2018). (T, N)-Implications and Some Functional Equations. In: Barreto, G., Coelho, R. (eds) Fuzzy Information Processing. NAFIPS 2018. Communications in Computer and Information Science, vol 831. Springer, Cham. https://doi.org/10.1007/978-3-319-95312-0_26
Download citation
DOI: https://doi.org/10.1007/978-3-319-95312-0_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-95311-3
Online ISBN: 978-3-319-95312-0
eBook Packages: Computer ScienceComputer Science (R0)