[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

(T, N)-Implications and Some Functional Equations

  • Conference paper
  • First Online:
Fuzzy Information Processing (NAFIPS 2018)

Abstract

Fuzzy implications has drawn attention of many authors along the years, as their theoretical features seem to be a useful tool in a fair amount of applications. Meanwhile, functional equations are those in which the unknowns are functions instead of a traditional variable, and within the fuzzy logic, they can be considered generalizations of some tautologies of the classical logic. In this paper we investigate the validity of five functional equations for the class of (TN)-implications, namely, we have selected the law of importation and four distributivity properties and have studied them in the context of the aforementioned operator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baczyński, M., Balasubramaniam, J.: Fuzzy Implications. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69082-5

    Book  MATH  Google Scholar 

  2. Baczyński, M.: On the applications of fuzzy implication functions. In: Balas, V.E., Fodor, J., Várkonyiczy, A.R., Dombi, J., Jain, L.C. (eds.) Soft Computing Applications. AISC, vol. 195, pp. 9–10. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-33941-7_4

    Chapter  Google Scholar 

  3. Baczyński, M., Beliakov, G., Bustince, H., Pradera, A. (eds.): Advances in Fuzzy Implication Functions. Studies in Fuzziness and Soft Computing, vol. 300. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35677-3

    Book  MATH  Google Scholar 

  4. Baczynski, M., Jayaram, B., Massanet, S., Torrens, J.: Fuzzy implications: past, present, and future. In: Kacprzyk, J., Pedrycz, W. (eds.) Springer Handbook of Computational Intelligence, pp. 183–202. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-43505-2_12

    Chapter  Google Scholar 

  5. Bedregal, B.C.: A normal form which preserves tautologies and contradictions in a class of fuzzy logics. J. Algorithms 62(3–4), 135–147 (2007)

    Article  MathSciNet  Google Scholar 

  6. Bertoluzza, C.: On the distributivity between t-norms and t-conorms. In: Proceedings of 2nd IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 1993), San Francisco, USA, pp. 140–147 (1993)

    Google Scholar 

  7. Bertoluzza, C., Doldi, V.: On the distributivity between t-norms and t-conorms. Fuzzy Sets Syst. 142, 85–104 (2004)

    Article  MathSciNet  Google Scholar 

  8. Bloch, I.: Duality vs. adjunction for fuzzy mathematical morphology and general form of fuzzy erosions and dilations. Fuzzy Sets Syst. 160(13), 1858–1867 (2009)

    Article  MathSciNet  Google Scholar 

  9. Bustince, H., Fernández, J., Sanz, J., Baczyński, M., Mesiar, R.: Construction of strong equality index from implication operators. Fuzzy Sets Syst. 211, 15–33 (2013)

    Article  MathSciNet  Google Scholar 

  10. Carbonell, M., Mas, M., Suner, J., Torrens, J.: On distributivity and modularity in De Morgan triplets. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 4, 351–368 (1996)

    Article  MathSciNet  Google Scholar 

  11. Cruz, A., Bedregal, B.C., Santiago, R.H.N.: On the characterizations of fuzzy implications satisfying I(x, I(y, z)) = I(I(x, y), I(x, z)). Int. J. Approx. Reason. 93, 261–276 (2018)

    Article  MathSciNet  Google Scholar 

  12. Dimuro, G.P., Bedregal, B., Santiago, R.H.: On (G, N)-implications derived from grouping functions. Inf. Sci. 279, 1–17 (2014)

    Article  MathSciNet  Google Scholar 

  13. Dimuro, G.P., Bedregal, B.C.: On residual implications derived from overlap functions. Inf. Sci. 312, 78–88 (2015)

    Article  MathSciNet  Google Scholar 

  14. Dimuro, G.P., Bedregal, B., Bustince, H., Jurio, A., Baczyński, M., Mis, K.: QL-operations and QL-implication functions constructed from tuples (O, G, N) and the generation of fuzzy subsethood and entropy measures. Int. J. Approx. Reason. 82, 170–192 (2017)

    Article  MathSciNet  Google Scholar 

  15. Jayaram, B.: On the law of importation \((x\wedge y) \rightarrow z \equiv (x \rightarrow (y \rightarrow z))\) in fuzzy logic. IEEE Trans. Fuzzy Syst. 16(1), 130–144 (2008)

    Article  Google Scholar 

  16. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht (2000)

    Book  Google Scholar 

  17. Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice Hall, USA (1995)

    MATH  Google Scholar 

  18. Mas, M., Monserrat, M., Torrens, J., Trillas, E.: A survey on fuzzy implication functions. IEEE Trans. Fuzzy Syst. 15(6), 1107–1121 (2007)

    Article  Google Scholar 

  19. Mas, M., Monserrat, M., Torrens, J.: The law of importation for discrete implications. Inf. Sci. 179(24), 4208–4218 (2009)

    Article  MathSciNet  Google Scholar 

  20. Štěpnička, M., De Baets, B.: Implication-based models of monotone fuzzy rule bases. Fuzzy Sets Syst. 232, 134–155 (2013)

    Article  MathSciNet  Google Scholar 

  21. Pradera, A., Beliakov, G., Bustince, H., De Baets, B.: A review of the relationships between implication, negation and aggregation functions from the point of view of material implication. Inf. Sci. 329, 357–80 (2016)

    Article  Google Scholar 

  22. Pinheiro, J., Bedregal, B., Santiago, R.H., Santos, H.: (T, N)-implications. In: 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–6 (2017)

    Google Scholar 

  23. Pinheiro, J., Bedregal, B., Santiago, R.H., Santos, H.: A study of (T, N)-implications and its use to construct a new class of fuzzy subsethood measure. Int. J. Approx. Reason. 97, 1–16 (2018)

    Article  MathSciNet  Google Scholar 

  24. Reiser, R., Bedregal, B., Baczyński, M.: Aggregating fuzzy implications. Inf. Sci. 253, 126–146 (2013)

    Article  MathSciNet  Google Scholar 

  25. Santos, H.S.: A new class of fuzzy subsethood measures. Ph.D. thesis, Universidade Federal do Rio Grande do Norte, Natal (2016)

    Google Scholar 

  26. Santos, H., Bedregal, B., Dimuro, G.P., Bustince, H.: Penalty functions constructed from QL subsethood measures. In: 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–5 (2017)

    Google Scholar 

  27. Yager, R.R.: On some new classes of implication operators and their role in approximate reasoning. Inf. Sci. 167(1–4), 193–216 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Brazilian funding agency CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), under the processes No. 306970/2013-9 and 307781/2016-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jocivania Pinheiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pinheiro, J., Bedregal, B., Santiago, R., Santos, H., Dimuro, G.P. (2018). (T, N)-Implications and Some Functional Equations. In: Barreto, G., Coelho, R. (eds) Fuzzy Information Processing. NAFIPS 2018. Communications in Computer and Information Science, vol 831. Springer, Cham. https://doi.org/10.1007/978-3-319-95312-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95312-0_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95311-3

  • Online ISBN: 978-3-319-95312-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics