[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Abstract

This research explores the capacity of Machine Learning techniques to detect anomalies and how incorporate this capacity to thinger.io platform. Thinger.io is a IoT opensource platform that allows to create an IoT environment using any hardware available on market. In this paper, several ML techniques are proposed to detect anomalies in the platform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbasi, A.Z., Islam, N., Shaikh, Z.A., et al.: A review of wireless sensors and networks’ applications in agriculture. Comput. Stand. Interfaces 36(2), 263–270 (2014)

    Article  Google Scholar 

  2. Alemdar, H., Ersoy, C.: Wireless sensor networks for healthcare: a survey. Comput. Netw. 54(15), 2688–2710 (2010)

    Article  Google Scholar 

  3. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)

    Article  Google Scholar 

  4. Augusto, J., Shapiro, D.: Advances in Ambient Intelligence, vol. 164. IOS Press Inc., Amsterdam (2007)

    Google Scholar 

  5. Aziz, A., Salama, M., ella Hassanien, A., El-Ola Hanafi, S.: Detectors generation using genetic algorithm for a negative selection inspired anomaly network intrusion detection system. In: Proceedings of the Federated Conference on Computer Science and Information Systems, pp. 597–602, September 2012

    Google Scholar 

  6. Borrajo, M.L., Baruque, B., Corchado, E., Bajo, J., Corchado, J.M.: Hybrid neural intelligent system to predict business failure in small-to-medium-size enterprises. Int. J. Neural Syst. 21(04), 277–296 (2011)

    Article  Google Scholar 

  7. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 15 (2009)

    Article  Google Scholar 

  8. Chapelle, O., Schlkopf, B., Zien, A.: Semi-Supervised Learning, 1st edn. MIT Press, Cambridge (2010)

    Google Scholar 

  9. Dasgupta, D., Niño, L.F.: Immunological Computation: Theory and Applications. CRC Press, Boca Raton (2009)

    Google Scholar 

  10. De Castro, L.N., Von Zuben, F.J.: Learning and optimization using the clonal selection principle. IEEE Trans. Evol. Comput. 6(3), 239–251 (2002)

    Article  Google Scholar 

  11. Ducatel, K., Bogdanowicz, M., Scapolo, F., Leijten, J., Burgelman, J.: Scenarios for ambient intelligence 2010, ISTAG Report, European Commission. Institute for Prospective Technological Studies, Seville (2001). ftp://ftp.cordis.lu/pub/ist/docs/istagscenarios2010.pdf

  12. Eskin, E., Arnold, A., Prerau, M., Portnoy, L., Stolfo, S.: A geometric framework for unsupervised anomaly detection. In: Barbará, D., Jajodia, S. (eds.) Applications of data mining in computer security. ADIS, vol. 6, pp. 77–101. Springer, Boston (2002). https://doi.org/10.1007/978-1-4615-0953-0_4

    Chapter  Google Scholar 

  13. Fisher, D.K., Fletcher, R.S., Anapalli, S.S., Pringle III, H.: Development of an open-source cloud-connected sensor-monitoring platform. Adv. Internet Things 8(01), 1 (2017)

    Article  Google Scholar 

  14. Florez, J., Rojas, J., López, D.: Evaluación de tecnologías de comunicación para redes vehiculares de última generación. Redes de Ingeniería 1(1), 12–23 (2012)

    Article  Google Scholar 

  15. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of things (IoT): a vision, architectural elements, and future directions. Future Gener. Comput. Syst. 29(7), 1645–1660 (2013)

    Article  Google Scholar 

  16. Ji, Z., Dasgupta, D.: Real-valued negative selection algorithm with variable-sized detectors. In: Deb, K. (ed.) GECCO 2004. LNCS, vol. 3102, pp. 287–298. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24854-5_30

    Chapter  Google Scholar 

  17. Kamar, I., Chatterjee, P., Hamie, A.: Internet of things in learning systems-a perspective of platforms. Int. J. Adv. Res. Comput. Sci. 7(2), 52–56 (2016)

    Google Scholar 

  18. Kim, J., Lee, J., Kim, J., Yun, J.: M2M service platforms: survey, issues, and enabling technologies. IEEE Commun. Surv. Tutor. 16(1), 61–76 (2014)

    Article  Google Scholar 

  19. King, S., King, D., Astley, K., Tarassenko, L., Hayton, P., Utete, S.: The use of novelty detection techniques for monitoring high-integrity plant. In: Proceedings of the 2002 International Conference on Control Applications, vol. 1, pp. 221–226. IEEE (2002)

    Google Scholar 

  20. La Ode Hasnuddin, S.S., Abidin, M.S.: Internet of things for early detection of lanslides. In: Prosiding Seminar Nasional Riset Kuantitatif Terapan 2017, vol. 1 (2018)

    Google Scholar 

  21. Likotiko, E., Petrov, D., Mwangoka, J., Hilleringmann, U.: Real time solid waste monitoring using cloud and sensors technologies. Online J. Sci. Technol. 8(1), 106–116 (2018)

    Google Scholar 

  22. Martí, L., Fansi-Tchango, A., Navarro, L., Schoenauer, M.: Anomaly detection with the voronoi diagram evolutionary algorithm. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 697–706. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6_65

    Chapter  Google Scholar 

  23. Martí, L., Fansi Tchango, A., Navarro, L., Schoenauer, M.: VorAIS: a multi-objective voronoi diagram-based artificial immune system. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion, pp. 11–12. ACM (2016)

    Google Scholar 

  24. Miorandi, D., Sicari, S., De Pellegrini, F., Chlamtac, I.: Internet of things: vision, applications and research challenges. Ad Hoc Netw. 10(7), 1497–1516 (2012)

    Article  Google Scholar 

  25. Pantazis, N.A., Nikolidakis, S.A., Vergados, D.D.: Energy-efficient routing protocols in wireless sensor networks: a survey. IEEE Commun. Surv. Tutor. 15(2), 551–591 (2013)

    Article  Google Scholar 

  26. Patel, S., Park, H., Bonato, P., Chan, L., Rodgers, M.: A review of wearable sensors and systems with application in rehabilitation. J. Neuroeng. Rehabil. 9(1), 21 (2012)

    Article  Google Scholar 

  27. Shafi, K., Abbass, H.A.: Biologically-inspired complex adaptive systems approaches to network intrusion detection. Inf. Secur. Tech. Rep. 12(4), 209–217 (2007)

    Article  Google Scholar 

  28. Sudevalayam, S., Kulkarni, P.: Energy harvesting sensor nodes: survey and implications. IEEE Commun. Surv. Tutor. 13(3), 443–461 (2011)

    Article  Google Scholar 

  29. Suo, H., Wan, J., Zou, C., Liu, J.: Security in the internet of things: a review. In: 2012 International Conference on Computer Science and Electronics Engineering (ICCSEE), vol. 3, pp. 648–651. IEEE (2012)

    Google Scholar 

  30. Suryadevara, N., Gaddam, A., Rayudu, R., Mukhopadhyay, S.: Wireless sensors network based safe home to care elderly people: behaviour detection. Sens. Actuators A Phys. 186, 277–283 (2012)

    Article  Google Scholar 

  31. Weber, R.H.: Internet of things-new security and privacy challenges. Comput. Law Secur. Rev. 26(1), 23–30 (2010)

    Article  Google Scholar 

  32. Woźniak, M., Graña, M., Corchado, E.: A survey of multiple classifier systems as hybrid systems. Inf. Fusion 16, 3–17 (2014). Special Issue on Information Fusion in Hybrid Intelligent Fusion Systems, http://www.sciencedirect.com/science/article/pii/S156625351300047X

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Project MINECO TEC2017-88048-C2-2-R, FAPERJ APQ1 Project 211.500/2015, FAPERJ APQ1 Project 211.451/2015, CNPq Universal 430082/2016-9, FAPERJ JCNE E-26/203.287/2017, Project Prociência 2017-038625-0, CNPq PQ 312792/2017-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nayat Sanchez-Pi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sanchez-Pi, N., Martí, L., Bustamante, Á.L., Molina, J.M. (2018). How Machine Learning Could Detect Anomalies on Thinger.io Platform?. In: Bajo, J., et al. Highlights of Practical Applications of Agents, Multi-Agent Systems, and Complexity: The PAAMS Collection. PAAMS 2018. Communications in Computer and Information Science, vol 887. Springer, Cham. https://doi.org/10.1007/978-3-319-94779-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94779-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94778-5

  • Online ISBN: 978-3-319-94779-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics