Abstract
This research explores the capacity of Machine Learning techniques to detect anomalies and how incorporate this capacity to thinger.io platform. Thinger.io is a IoT opensource platform that allows to create an IoT environment using any hardware available on market. In this paper, several ML techniques are proposed to detect anomalies in the platform.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abbasi, A.Z., Islam, N., Shaikh, Z.A., et al.: A review of wireless sensors and networks’ applications in agriculture. Comput. Stand. Interfaces 36(2), 263–270 (2014)
Alemdar, H., Ersoy, C.: Wireless sensor networks for healthcare: a survey. Comput. Netw. 54(15), 2688–2710 (2010)
Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)
Augusto, J., Shapiro, D.: Advances in Ambient Intelligence, vol. 164. IOS Press Inc., Amsterdam (2007)
Aziz, A., Salama, M., ella Hassanien, A., El-Ola Hanafi, S.: Detectors generation using genetic algorithm for a negative selection inspired anomaly network intrusion detection system. In: Proceedings of the Federated Conference on Computer Science and Information Systems, pp. 597–602, September 2012
Borrajo, M.L., Baruque, B., Corchado, E., Bajo, J., Corchado, J.M.: Hybrid neural intelligent system to predict business failure in small-to-medium-size enterprises. Int. J. Neural Syst. 21(04), 277–296 (2011)
Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 15 (2009)
Chapelle, O., Schlkopf, B., Zien, A.: Semi-Supervised Learning, 1st edn. MIT Press, Cambridge (2010)
Dasgupta, D., Niño, L.F.: Immunological Computation: Theory and Applications. CRC Press, Boca Raton (2009)
De Castro, L.N., Von Zuben, F.J.: Learning and optimization using the clonal selection principle. IEEE Trans. Evol. Comput. 6(3), 239–251 (2002)
Ducatel, K., Bogdanowicz, M., Scapolo, F., Leijten, J., Burgelman, J.: Scenarios for ambient intelligence 2010, ISTAG Report, European Commission. Institute for Prospective Technological Studies, Seville (2001). ftp://ftp.cordis.lu/pub/ist/docs/istagscenarios2010.pdf
Eskin, E., Arnold, A., Prerau, M., Portnoy, L., Stolfo, S.: A geometric framework for unsupervised anomaly detection. In: Barbará, D., Jajodia, S. (eds.) Applications of data mining in computer security. ADIS, vol. 6, pp. 77–101. Springer, Boston (2002). https://doi.org/10.1007/978-1-4615-0953-0_4
Fisher, D.K., Fletcher, R.S., Anapalli, S.S., Pringle III, H.: Development of an open-source cloud-connected sensor-monitoring platform. Adv. Internet Things 8(01), 1 (2017)
Florez, J., Rojas, J., López, D.: Evaluación de tecnologías de comunicación para redes vehiculares de última generación. Redes de Ingeniería 1(1), 12–23 (2012)
Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of things (IoT): a vision, architectural elements, and future directions. Future Gener. Comput. Syst. 29(7), 1645–1660 (2013)
Ji, Z., Dasgupta, D.: Real-valued negative selection algorithm with variable-sized detectors. In: Deb, K. (ed.) GECCO 2004. LNCS, vol. 3102, pp. 287–298. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24854-5_30
Kamar, I., Chatterjee, P., Hamie, A.: Internet of things in learning systems-a perspective of platforms. Int. J. Adv. Res. Comput. Sci. 7(2), 52–56 (2016)
Kim, J., Lee, J., Kim, J., Yun, J.: M2M service platforms: survey, issues, and enabling technologies. IEEE Commun. Surv. Tutor. 16(1), 61–76 (2014)
King, S., King, D., Astley, K., Tarassenko, L., Hayton, P., Utete, S.: The use of novelty detection techniques for monitoring high-integrity plant. In: Proceedings of the 2002 International Conference on Control Applications, vol. 1, pp. 221–226. IEEE (2002)
La Ode Hasnuddin, S.S., Abidin, M.S.: Internet of things for early detection of lanslides. In: Prosiding Seminar Nasional Riset Kuantitatif Terapan 2017, vol. 1 (2018)
Likotiko, E., Petrov, D., Mwangoka, J., Hilleringmann, U.: Real time solid waste monitoring using cloud and sensors technologies. Online J. Sci. Technol. 8(1), 106–116 (2018)
Martí, L., Fansi-Tchango, A., Navarro, L., Schoenauer, M.: Anomaly detection with the voronoi diagram evolutionary algorithm. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 697–706. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6_65
Martí, L., Fansi Tchango, A., Navarro, L., Schoenauer, M.: VorAIS: a multi-objective voronoi diagram-based artificial immune system. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion, pp. 11–12. ACM (2016)
Miorandi, D., Sicari, S., De Pellegrini, F., Chlamtac, I.: Internet of things: vision, applications and research challenges. Ad Hoc Netw. 10(7), 1497–1516 (2012)
Pantazis, N.A., Nikolidakis, S.A., Vergados, D.D.: Energy-efficient routing protocols in wireless sensor networks: a survey. IEEE Commun. Surv. Tutor. 15(2), 551–591 (2013)
Patel, S., Park, H., Bonato, P., Chan, L., Rodgers, M.: A review of wearable sensors and systems with application in rehabilitation. J. Neuroeng. Rehabil. 9(1), 21 (2012)
Shafi, K., Abbass, H.A.: Biologically-inspired complex adaptive systems approaches to network intrusion detection. Inf. Secur. Tech. Rep. 12(4), 209–217 (2007)
Sudevalayam, S., Kulkarni, P.: Energy harvesting sensor nodes: survey and implications. IEEE Commun. Surv. Tutor. 13(3), 443–461 (2011)
Suo, H., Wan, J., Zou, C., Liu, J.: Security in the internet of things: a review. In: 2012 International Conference on Computer Science and Electronics Engineering (ICCSEE), vol. 3, pp. 648–651. IEEE (2012)
Suryadevara, N., Gaddam, A., Rayudu, R., Mukhopadhyay, S.: Wireless sensors network based safe home to care elderly people: behaviour detection. Sens. Actuators A Phys. 186, 277–283 (2012)
Weber, R.H.: Internet of things-new security and privacy challenges. Comput. Law Secur. Rev. 26(1), 23–30 (2010)
Woźniak, M., Graña, M., Corchado, E.: A survey of multiple classifier systems as hybrid systems. Inf. Fusion 16, 3–17 (2014). Special Issue on Information Fusion in Hybrid Intelligent Fusion Systems, http://www.sciencedirect.com/science/article/pii/S156625351300047X
Acknowledgements
This work was supported in part by Project MINECO TEC2017-88048-C2-2-R, FAPERJ APQ1 Project 211.500/2015, FAPERJ APQ1 Project 211.451/2015, CNPq Universal 430082/2016-9, FAPERJ JCNE E-26/203.287/2017, Project Prociência 2017-038625-0, CNPq PQ 312792/2017-4.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Sanchez-Pi, N., Martí, L., Bustamante, Á.L., Molina, J.M. (2018). How Machine Learning Could Detect Anomalies on Thinger.io Platform?. In: Bajo, J., et al. Highlights of Practical Applications of Agents, Multi-Agent Systems, and Complexity: The PAAMS Collection. PAAMS 2018. Communications in Computer and Information Science, vol 887. Springer, Cham. https://doi.org/10.1007/978-3-319-94779-2_23
Download citation
DOI: https://doi.org/10.1007/978-3-319-94779-2_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-94778-5
Online ISBN: 978-3-319-94779-2
eBook Packages: Computer ScienceComputer Science (R0)