[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Error-Free Affine, Unitary, and Probabilistic OBDDs

  • Conference paper
  • First Online:
Descriptional Complexity of Formal Systems (DCFS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10952))

Included in the following conference series:

Abstract

We introduce the affine OBDD model and show that zero-error affine OBDDs can be exponentially narrower than bounded-error unitary and probabilistic OBDDs on certain problems. Moreover, we show that Las Vegas unitary and probabilistic OBDDs can be quadratically narrower than deterministic OBDDs. We also obtain the same results for the automata versions of these models.

Part of the research work was done while Ibrahimov was visiting University of Latvia in February 2017.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    It evolves linearly but a non-linear operator is applied when we retrieve information from the state vector.

  2. 2.

    Suppose we have \(w_i\le m\) nodes on a level i; then the node \(u_j\) of this level corresponds to the state \(s_j\), for \(j\in \{1,\dots ,w_i\}\).

References

  1. Ablayev, F., Gainutdinova, A.: Complexity of quantum uniform and nonuniform automata. In: De Felice, C., Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572, pp. 78–87. Springer, Heidelberg (2005). https://doi.org/10.1007/11505877_7

    Chapter  Google Scholar 

  2. Ablayev, F., Gainutdinova, A., Khadiev, K., Yakaryılmaz, A.: Very narrow quantum OBDDs and width hierarchies for classical OBDDs. Lobachevskii J. Math. 37(6), 670–682 (2016)

    Article  MathSciNet  Google Scholar 

  3. Ablayev, F.: Randomization and nondeterminism are incomparable for ordered read-once branching programs. In: ECCC (021) (1997)

    Chapter  Google Scholar 

  4. Ablayev, F., Gainutdinova, A., Karpinski, M., Moore, C., Pollett, C.: On the computational power of probabilistic and quantum branching program. Inf. Comput. 203(2), 145–162 (2005)

    Article  MathSciNet  Google Scholar 

  5. Ablayev, F., Gainutdinova, A., Khadiev, K., Yakaryılmaz, A.: Very narrow quantum OBDDs and width hierarchies for classical OBDDs. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.) DCFS 2014. LNCS, vol. 8614, pp. 53–64. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09704-6_6

    Chapter  Google Scholar 

  6. Ablayev, F., Karpinski, M.: On the power of randomized branching programs. In: Meyer, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 348–356. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61440-0_141

    Chapter  Google Scholar 

  7. Ambainis, A., Watrous, J.: Two-way finite automata with quantum and classical states. Theor. Comput. Sci. 287(1), 299–311 (2002)

    Article  MathSciNet  Google Scholar 

  8. Ambainis, A., Yakaryılmaz, A.: Automata and quantum computing. Technical report 1507.01988, arXiv (2015)

    Google Scholar 

  9. Belovs, A., Montoya, J.A., Yakaryılmaz, A.: On a conjecture by Christian Choffrut. Int. J. Found. Comput. Sci. 28(5), 483–502 (2017)

    Article  MathSciNet  Google Scholar 

  10. Díaz-Caro, A., Yakaryılmaz, A.: Affine computation and affine automaton. In: Kulikov, A.S., Woeginger, G.J. (eds.) CSR 2016. LNCS, vol. 9691, pp. 146–160. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-34171-2_11

    Chapter  MATH  Google Scholar 

  11. \(\check{\rm D}\)uriš, P., Hromkovič, J., Rolim, J.D.P., Schnitger, G.: Las Vegas versus determinism for one-way communication complexity, finite automata, and polynomial-time computations. In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 117–128. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0023453

  12. Gainutdinova, A.F.: Comparative complexity of quantum and classical OBDDs for total and partial functions. Russ. Math. 59(11), 26–35 (2015)

    Article  MathSciNet  Google Scholar 

  13. Gainutdinova, A., Yakaryılmaz, A.: Nondeterministic unitary OBDDs. In: Weil, P. (ed.) CSR 2017. LNCS, vol. 10304, pp. 126–140. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58747-9_13

    Chapter  Google Scholar 

  14. Hirvensalo, M., Moutot, E., Yakaryılmaz, A.: On the computational power of affine automata. In: Drewes, F., Martín-Vide, C., Truthe, B. (eds.) LATA 2017. LNCS, vol. 10168, pp. 405–417. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53733-7_30

    Chapter  MATH  Google Scholar 

  15. Hirvensalo, M., Seibert, S.: Lower bounds for Las Vegas automata by information theory. RAIRO Theor. Inform. Appl. 37(1), 39–49 (2003)

    Article  MathSciNet  Google Scholar 

  16. Hromkovič, J., Schnitger, G.: On the power of Las Vegas for one-way communication complexity, OBDDs, and finite automata. Inf. Comput. 169(2), 284–296 (2001)

    Article  MathSciNet  Google Scholar 

  17. Khadiev, K.: On the hierarchies for deterministic, nondeterministic and probabilistic ordered read-k-times branching programs. Lobachevskii J. Math. 37(6), 682–703 (2016)

    Article  MathSciNet  Google Scholar 

  18. Khadiev, K., Khadieva, A.: Reordering method and hierarchies for quantum and classical ordered binary decision diagrams. In: Weil, P. (ed.) CSR 2017. LNCS, vol. 10304, pp. 162–175. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58747-9_16

    Chapter  MATH  Google Scholar 

  19. Klauck, H.: On quantum and probabilistic communication: Las Vegas and one-way protocols. In: STOC 2000, pp. 644–651 (2000)

    Google Scholar 

  20. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, New York (1997)

    Book  Google Scholar 

  21. Moore, C., Crutchfield, J.P.: Quantum automata and quantum grammars. Theor. Comput. Sci. 237(1–2), 275–306 (2000)

    Article  MathSciNet  Google Scholar 

  22. Sauerhoff, M.: Quantum vs. classical read-once branching programs. In: Complexity of Boolean Functions, vol. 06111, Dagstuhl Seminar Proceedings, Internationales Begegnungs und Forschungszentrum für Informatik (2006)

    Google Scholar 

  23. Sauerhoff, M., Sieling, D.: Quantum branching programs and space-bounded nonuniform quantum complexity. Theor. Comput. Sci. 334(1), 177–225 (2005)

    Article  MathSciNet  Google Scholar 

  24. Savickỳ, P., Žák, S.: A read-once lower bound and a (1,+ \(k\))-hierarchy for branching programs. Theor. Comput. Sci. 238(1), 347–362 (2000)

    Article  MathSciNet  Google Scholar 

  25. Say, A.C.C., Yakaryılmaz, A.: Quantum finite automata: a modern introduction. In: Calude, C.S., Freivalds, R., Kazuo, I. (eds.) Computing with New Resources. LNCS, vol. 8808, pp. 208–222. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13350-8_16

    Chapter  MATH  Google Scholar 

  26. Villagra, M., Yakaryılmaz, A.: Language recognition power and succinctness of affine automata. Nat. Comput. 17(2), 283–293 (2018). https://doi.org/10.1007/s11047-017-9652-z

    Article  MathSciNet  Google Scholar 

  27. Villagra, M., Yakaryılmaz, A.: Language recognition power and succinctness of affine automata. In: Amos, M., Condon, A. (eds.) UCNC 2016. LNCS, vol. 9726, pp. 116–129. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41312-9_10

    Chapter  MATH  Google Scholar 

  28. Wegener, I.: Branching Programs and Binary Decision Diagrams: Theory and Applications. SIAM, Philadelphia (2000)

    Google Scholar 

  29. Nakanishi, M., Khadiev, K., Prusis, K., Vihrovs, J., Yakaryilmaz, A.: Exact affine counter automata. Electron. Proc. Theoret. Comput. Sci. (EPTCS) 252, 205–218 (2017). https://doi.org/10.4204/EPTCS.252.20

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Evgenijs Vihrovs (University of Latvia) for his helpful discussions and anonymous reviewers for their very helpful comments.

The work is partially supported by ERC Advanced Grant MQC, Latvian State Research Programme NeXIT project No. 1. The work is also performed according to the Russian Government Program of Competitive Growth of Kazan Federal University. The research on Las-Vegas OBDDs (Sect. 5) is supported by Russian Science Foundation Grant 17-71-10152

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamil Khadiev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ibrahimov, R., Khadiev, K., Prūsis, K., Yakaryılmaz, A. (2018). Error-Free Affine, Unitary, and Probabilistic OBDDs. In: Konstantinidis, S., Pighizzini, G. (eds) Descriptional Complexity of Formal Systems. DCFS 2018. Lecture Notes in Computer Science(), vol 10952. Springer, Cham. https://doi.org/10.1007/978-3-319-94631-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94631-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94630-6

  • Online ISBN: 978-3-319-94631-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics