Abstract
Electroencephalography (EEG) is an electrophysiological monitoring method to record electrical activity of the brain using different electrodes, which are considered as the EEG channels that are placed on scalp. In this paper, we propose an effective information processing approach to explore the association among EEG channels under different circumstances. Particularly, we design four different experimental scenarios and record the EEG signals under motions of eye-opening and body-movement. With sequences of data collected in time order, we first compute the mutual conditional entropy to measure the association between two electrodes. Using the hierarchical clustering tree and data mechanics algorithm, we could effectively identify the association between particular EEG channels under certain motion scenarios. We also implement the weighted random forest to further classify the classes (experimental scenarios) of the EEG time series. Our evaluation results show that we could successfully classify the particular motions with given EEG data series.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Acharya, U.R., Molinari, F., Sree, S.V., Chattopadhyay, S., Ng, K.H., Suri, J.S.: Automated diagnosis of epileptic EEG using entropies. Biomed. Signal Process. Control 7(4), 401–408 (2012)
Booth, A., Gerding, E.H., McGroarty, F.: Performance-weighted ensembles of random forests for predicting price impact. Quant. Financ. 15(11), 1823–1835 (2015)
Choi, S., Yu, E., Hwang, E., Llinás, R.R.: Pathophysiological implication of CaV3.1 T-type Ca2+ channels in trigeminal neuropathic pain. Proc. Nat. Acad. Sci. U.S.A. 113(8), 2270–2275 (2016)
Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134(1), 9–21 (2004)
Esmaeili, V., Assareh, A., Shamsollahi, M.B., Moradi, M.H., Arefian, N.M.: Estimating the depth of anesthesia using fuzzy soft computation applied to EEG features. Intell. Data Anal. 12(4), 393–407 (2008)
Fushing, H., Chen, C.: Data mechanics and coupling geometry on binary bipartite networks. PLoS ONE 9(8), 1–11 (2014)
Gajic, D., Djurovic, Z., Gennaro, S.D., Gustafsson, F.: Classification of EEG signals for detection of epileptic seizures based on wavelets and statistical pattern recognition. Biomed. Eng.: Appl. Basis Commun. 26(2), 1450021 (2014)
Guay, S., Beaumont, L.D., Drisdelle, B.L., Lina, J.M., Jolicoeur, P.: Electrophysiological impact of multiple concussions in asymptomatic athletes: a re-analysis based on alpha activity during a visual-spatial attention task. Neuropsychologia 108, 42–49 (2018)
Holroyd, C.B., Coles, M.G.H.: The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychol. Rev. 109(4), 679–709 (2002)
Klimesch, W.: EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res. Rev. 29, 169–195 (1999)
Pandey, A.K., Kamarajan, C., Manz, N., Chorlian, D.B., Stimus, A., Porjesz, B.: Delta, theta, and alpha event-related oscillations in alcoholics during Go/NoGo task: neurocognitive deficits in execution, inhibition, and attention processing. Prog. Neuropsychopharmacol. Biol. Psychiatry 65, 158–171 (2016)
Pfurtscheller, G., da Silva, F.L.: Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110(11), 1842–1857 (1999)
Sanei, S., Chambers, J.: EEG Signal Processing, p. 1. Wiley, Hoboken (2007)
Niedermeyer, E., da Silva, F.H.L.: Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams & Wilkins, Philadelphia (2005)
Vecchio, F., Di Iorio, R., Miraglia, F., Granata, G., Romanello, R., Bramanti, P., Rossini, P.M.: Transcranial direct current stimulation generates a transient increase of small-world in brain connectivity: an EEG graph theoretical analysis. Exp. Brain Res. 236, 1117–1127 (2018)
Winham, S.J., Freimuth, R.R., Biernacka, J.M.: A weighted random forests approach to improve predictive performance. Stat. Anal. Data Min. 6(6), 496–505 (2013)
Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002)
Xu, R.: Improvements to random forest methodology (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Zheng, J., Liang, M., Ekstrom, A., Ge, L., Yu, W., Hsieh, F. (2018). On Association Study of Scalp EEG Data Channels Under Different Circumstances. In: Chellappan, S., Cheng, W., Li, W. (eds) Wireless Algorithms, Systems, and Applications. WASA 2018. Lecture Notes in Computer Science(), vol 10874. Springer, Cham. https://doi.org/10.1007/978-3-319-94268-1_56
Download citation
DOI: https://doi.org/10.1007/978-3-319-94268-1_56
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-94267-4
Online ISBN: 978-3-319-94268-1
eBook Packages: Computer ScienceComputer Science (R0)