[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

On Association Study of Scalp EEG Data Channels Under Different Circumstances

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10874))

Abstract

Electroencephalography (EEG) is an electrophysiological monitoring method to record electrical activity of the brain using different electrodes, which are considered as the EEG channels that are placed on scalp. In this paper, we propose an effective information processing approach to explore the association among EEG channels under different circumstances. Particularly, we design four different experimental scenarios and record the EEG signals under motions of eye-opening and body-movement. With sequences of data collected in time order, we first compute the mutual conditional entropy to measure the association between two electrodes. Using the hierarchical clustering tree and data mechanics algorithm, we could effectively identify the association between particular EEG channels under certain motion scenarios. We also implement the weighted random forest to further classify the classes (experimental scenarios) of the EEG time series. Our evaluation results show that we could successfully classify the particular motions with given EEG data series.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 87.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Acharya, U.R., Molinari, F., Sree, S.V., Chattopadhyay, S., Ng, K.H., Suri, J.S.: Automated diagnosis of epileptic EEG using entropies. Biomed. Signal Process. Control 7(4), 401–408 (2012)

    Article  Google Scholar 

  2. Booth, A., Gerding, E.H., McGroarty, F.: Performance-weighted ensembles of random forests for predicting price impact. Quant. Financ. 15(11), 1823–1835 (2015)

    Article  MathSciNet  Google Scholar 

  3. Choi, S., Yu, E., Hwang, E., Llinás, R.R.: Pathophysiological implication of CaV3.1 T-type Ca2+ channels in trigeminal neuropathic pain. Proc. Nat. Acad. Sci. U.S.A. 113(8), 2270–2275 (2016)

    Article  Google Scholar 

  4. Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134(1), 9–21 (2004)

    Article  Google Scholar 

  5. Esmaeili, V., Assareh, A., Shamsollahi, M.B., Moradi, M.H., Arefian, N.M.: Estimating the depth of anesthesia using fuzzy soft computation applied to EEG features. Intell. Data Anal. 12(4), 393–407 (2008)

    Google Scholar 

  6. Fushing, H., Chen, C.: Data mechanics and coupling geometry on binary bipartite networks. PLoS ONE 9(8), 1–11 (2014)

    Article  Google Scholar 

  7. Gajic, D., Djurovic, Z., Gennaro, S.D., Gustafsson, F.: Classification of EEG signals for detection of epileptic seizures based on wavelets and statistical pattern recognition. Biomed. Eng.: Appl. Basis Commun. 26(2), 1450021 (2014)

    Google Scholar 

  8. Guay, S., Beaumont, L.D., Drisdelle, B.L., Lina, J.M., Jolicoeur, P.: Electrophysiological impact of multiple concussions in asymptomatic athletes: a re-analysis based on alpha activity during a visual-spatial attention task. Neuropsychologia 108, 42–49 (2018)

    Article  Google Scholar 

  9. Holroyd, C.B., Coles, M.G.H.: The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychol. Rev. 109(4), 679–709 (2002)

    Article  Google Scholar 

  10. Klimesch, W.: EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res. Rev. 29, 169–195 (1999)

    Article  Google Scholar 

  11. Pandey, A.K., Kamarajan, C., Manz, N., Chorlian, D.B., Stimus, A., Porjesz, B.: Delta, theta, and alpha event-related oscillations in alcoholics during Go/NoGo task: neurocognitive deficits in execution, inhibition, and attention processing. Prog. Neuropsychopharmacol. Biol. Psychiatry 65, 158–171 (2016)

    Article  Google Scholar 

  12. Pfurtscheller, G., da Silva, F.L.: Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110(11), 1842–1857 (1999)

    Article  Google Scholar 

  13. Sanei, S., Chambers, J.: EEG Signal Processing, p. 1. Wiley, Hoboken (2007)

    Book  Google Scholar 

  14. Niedermeyer, E., da Silva, F.H.L.: Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams & Wilkins, Philadelphia (2005)

    Google Scholar 

  15. Vecchio, F., Di Iorio, R., Miraglia, F., Granata, G., Romanello, R., Bramanti, P., Rossini, P.M.: Transcranial direct current stimulation generates a transient increase of small-world in brain connectivity: an EEG graph theoretical analysis. Exp. Brain Res. 236, 1117–1127 (2018)

    Article  Google Scholar 

  16. Winham, S.J., Freimuth, R.R., Biernacka, J.M.: A weighted random forests approach to improve predictive performance. Stat. Anal. Data Min. 6(6), 496–505 (2013)

    Article  MathSciNet  Google Scholar 

  17. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002)

    Article  Google Scholar 

  18. Xu, R.: Improvements to random forest methodology (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fushing Hsieh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zheng, J., Liang, M., Ekstrom, A., Ge, L., Yu, W., Hsieh, F. (2018). On Association Study of Scalp EEG Data Channels Under Different Circumstances. In: Chellappan, S., Cheng, W., Li, W. (eds) Wireless Algorithms, Systems, and Applications. WASA 2018. Lecture Notes in Computer Science(), vol 10874. Springer, Cham. https://doi.org/10.1007/978-3-319-94268-1_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94268-1_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94267-4

  • Online ISBN: 978-3-319-94268-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics