Abstract
In this paper we present an approach to reasoning with large theories which is based on the abstraction-refinement framework. The proposed approach consists of the following approximations: the over-approximation, the under-approximation and their combination. We present several concrete abstractions based on subsumption, signature grouping and argument filtering. We implemented our approach in a theorem prover for first-order logic iProver and evaluated over the TPTP library.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Preliminary version of this work was presented at the IWIL workshop [13].
- 2.
iProver is available at: http://www.cs.man.ac.uk/~korovink/iprover/.
References
Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S., Sharygina, N.: An extension of lazy abstraction with interpolation for programs with arrays. Formal Methods Syst. Des. 45(1), 63–109 (2014)
Benzmüller, C., Steen, A., Wisniewski, M.: Leo-III version 1.1 (system description). In: Eiter, T., Sands, D., Sutcliffe, G., Voronkov, A. (eds.) IWIL@LPAR 2017. Kalpa Publications in Computing, vol.1, pp. 11–26. EasyChair (2017)
Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending sledgehammer with SMT solvers. J. Autom. Reason. 51(1), 109–128 (2013)
Blanchette, J.C., Böhme, S., Popescu, A., Smallbone, N.: Encoding monomorphic and polymorphic types. Log. Methods Comput. Sci. 12(4:13), 1–52 (2016)
Bonacina, M.P., Lynch, C., de Moura, L.M.: On deciding satisfiability by theorem proving with speculative inferences. J. Autom. Reason. 47(2), 161–189 (2011)
Brown, C.E.: Reducing higher-order theorem proving to a sequence of SAT problems. J. Autom. Reason. 51(1), 57–77 (2013)
Bryant, R.E., Kroening, D., Ouaknine, J., Seshia, S.A., Strichman, O., Brady, B.: Deciding bit-vector arithmetic with abstraction. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 358–372. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71209-1_28
Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM Trans. Program. Lang. Syst. 16(5), 1512–1542 (1994)
Conchon, S., Goel, A., Krstic, S., Majumdar, R., Roux, M.: Far-cubicle - a new reachability algorithm for cubicle. In: Stewart, D., Weissenbacher, G. (eds.) FMCAD 2017, pp. 172–175. IEEE (2017)
Gauthier, T., Kaliszyk, C.: Sharing HOL4 and HOL light proof knowledge. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol. 9450, pp. 372–386. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48899-7_26
Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfiabiliby modulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 306–320. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4_25
Glimm, B., Kazakov, Y., Liebig, T., Tran, T., Vialard, V.: Abstraction refinement for ontology materialization. In: Bienvenu, M., Ortiz, M., Rosati, R., Simkus, M. (eds.) Informal Proceedings of the 27th International Workshop on Description Logics. CEUR Workshop Proceedings, vol. 1193, pp. 185–196. CEUR-WS.org (2014)
Hernandez, J.C.L., Korovin, K.: Towards an abstraction-refinement framework for reasoning with large theories. In: Eiter, T., Sands, D., Sutcliffe, G., Voronkov, A. (eds.) IWIL@LPAR 2017. Kalpa Publications in Computing, vol. 1. EasyChair (2017)
Hoder, K., Reger, G., Suda, M., Voronkov, A.: Selecting the selection. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 313–329. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40229-1_22
Hoder, K., Voronkov, A.: Sine qua non for large theory reasoning. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 299–314. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22438-6_23
Irving, G., Szegedy, C., Alemi, A.A., Eén, N., Chollet, F., Urban, J.: DeepMath - deep sequence models for premise selection. In: Lee, D.D., Sugiyama, M., von Luxburg, U., Guyon, I., Garnett, R. (eds.) NIPS 2016, pp. 2235–2243 (2016)
Kaliszyk, C., Urban, J.: HOL(y)Hammer: online ATP service for HOL light. Math. Comput. Sci. 9(1), 5–22 (2015)
Korovin, K.: iProver - an instantiation-based theorem prover for first-order logic (system description). In: Proceedings of the IJCAR 2008, pp. 292–298 (2008)
Korovin, K.: Inst-Gen – a modular approach to instantiation-based automated reasoning. In: Voronkov, A., Weidenbach, C. (eds.) Programming Logics. LNCS, vol. 7797, pp. 239–270. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37651-1_10
Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_1
Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: a verified implementation of ML. In: POPL 2014, pp. 179–192 (2014)
Lynch, C.: Unsound theorem proving. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 473–487. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30124-0_36
Plaisted, D.A.: Theorem proving with abstraction. Artif. Intell. 16(1), 47–108 (1981)
Reger, G., Bjørner, N., Suda, M., Voronkov, A.: AVATAR modulo theories. In: Benzmüller, C., Sutcliffe, G., Rojas, R. (eds.) GCAI 2016. EPiC Series in Computing, vol. 41, pp. 39–52. EasyChair (2016)
Reynolds, A., Tinelli, C., de Moura, L.M.: Finding conflicting instances of quantified formulas in SMT. In: FMCAD 2014, pp. 195–202. IEEE (2014)
Riazanov, A., Voronkov, A.: Splitting without backtracking. In: Nebel, B. (ed.) Proceedings of the IJCAI 2001, pp. 611–617. Morgan Kaufmann (2001)
Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 735–743. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45221-5_49
Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71067-7_6
Sutcliffe, G.: The TPTP problem library and associated infrastructure. From CNF to TH0, TPTP v6.4.0. J. Autom. Reason. 59(4), 483–502 (2017)
Sutcliffe, G., Puzis, Y.: SRASS - a semantic relevance axiom selection system. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 295–310. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73595-3_20
Teucke, A., Weidenbach, C.: First-order logic theorem proving and model building via approximation and instantiation. In: Lutz, C., Ranise, S. (eds.) FroCoS 2015. LNCS (LNAI), vol. 9322, pp. 85–100. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24246-0_6
Urban, J.: MaLARea: a metasystem for automated reasoning in large theories. In: CEUR Workshop Proceedings, vol. 257, pp. 45–58 (2007)
Urban, J., Sutcliffe, G., Pudlák, P., Vyskočil, J.: MaLARea SG1 - machine learner for automated reasoning with semantic guidance. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 441–456. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71070-7_37
Acknowledgements
We would like to thank anonymous reviewers for many helpful suggestions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Lopez Hernandez, J.C., Korovin, K. (2018). An Abstraction-Refinement Framework for Reasoning with Large Theories. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds) Automated Reasoning. IJCAR 2018. Lecture Notes in Computer Science(), vol 10900. Springer, Cham. https://doi.org/10.1007/978-3-319-94205-6_43
Download citation
DOI: https://doi.org/10.1007/978-3-319-94205-6_43
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-94204-9
Online ISBN: 978-3-319-94205-6
eBook Packages: Computer ScienceComputer Science (R0)