[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

SVR-Ensemble Forecasting Approach for Ro-Ro Freight at Port of Algeciras (Spain)

  • Conference paper
  • First Online:
International Joint Conference SOCO’18-CISIS’18-ICEUTE’18 (SOCO’18-CISIS’18-ICEUTE’18 2018)

Abstract

The forecasting of the freight transportation provides a helpful information in the management of ports environment and can be used as a decision-making tool. This work addresses the forecasting of ro-ro (roll-on roll-off) freight flow in a port using a two-stage approach by an ensemble of the best Support Vector Regression (SVR) models. The time series used for forecasting is daily ro-ro freight in the port of Algeciras during the period from 2000 to 2007. Additionally, the time series was preprocessed through an exponential smoothing in order to improve the performance. The experiment results show that the proposed approach is a promising tool in freight forecasting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bilegan, C.I., Crainic, T.G., Gendreau, M.: Forecasting freight demand at intermodal terminals using neural networks–an integrated framework. Eur. J. Oper. Res. 13, 22–36 (2008)

    Google Scholar 

  2. Romero, G., Durán, G., Marenco, J., Weintraub, A.: An approach for efficient ship routing. Int. Trans. Oper. Res. 20, 767–794 (2013)

    Article  MathSciNet  Google Scholar 

  3. Vlahogianni, E.I., Golias, J.C., Karlaftis, M.G.: Short-term traffic forecasting: overview of objectives and methods. Transp. Rev. 24, 533–557 (2004)

    Article  Google Scholar 

  4. Al-Deek, H.M.: Which method is better for developing freight planning models at seaports - neural networks or multiple regression? Transp. Res. Rec. 1763, 90–97 (2001)

    Article  Google Scholar 

  5. Murat Celik, H.: Modeling freight distribution using artificial neural networks. J. Transp. Geogr. 12, 141–148 (2004)

    Article  Google Scholar 

  6. Mostafa, M.M.: Forecasting the Suez Canal traffic: a neural network analysis. Marit. Policy Manag. 31, 139–156 (2004)

    Article  Google Scholar 

  7. Ratrout, N.T., Gazder, U.: Factors affecting performance of parametric and non-parametric models for daily traffic forecasting. Procedia Comput. Sci. 32, 285–292 (2014)

    Article  Google Scholar 

  8. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)

    Google Scholar 

  9. Castro-Neto, M., Jeong, Y., Jeong, M.K., Han, L.D.: AADT prediction using support vector regression with data-dependent parameters. Expert Syst. Appl. 36, 2979–2986 (2009)

    Article  Google Scholar 

  10. Bhattacharya, A., Kumar, S.A., Tiwari, M., Talluri, S.: An intermodal freight transport system for optimal supply chain logistics. Transp. Res. Part C Emerg. Technol. 38, 73–84 (2014)

    Article  Google Scholar 

  11. Hwang, W.-Y., Lee, J.-S.: A new forecasting scheme for evaluating long-term prediction performances in supply chain management. Int. Trans. Oper. Res. 21, 1045–1060 (2014)

    Article  MathSciNet  Google Scholar 

  12. Marković, N., Milinković, S., Tikhonov, K.S., Schonfeld, P.: Analyzing passenger train arrival delays with support vector regression. Transp. Res. Part C Emerg. Technol. 56, 251–262 (2015)

    Article  Google Scholar 

  13. Karlaftis, M.G., Vlahogianni, E.I.: Statistical methods versus neural networks in transportation research: Differences, similarities and some insights. Transp. Res. Part C Emerg. Technol. 19, 387–399 (2011)

    Article  Google Scholar 

  14. Peng, W.Y., Chu, C.W.: A comparison of univariate methods for forecasting container throughput volumes. Math. Comput. Model. 50, 1045–1057 (2009)

    Article  Google Scholar 

  15. Tian, X., Liu, L., Lai, K.K., Wang, S.: Analysis and forecasting of port logistics using TEI@I methodology. Transp. Plan. Technol. 36, 669–684 (2013)

    Article  Google Scholar 

  16. Xie, G., Wang, S., Zhao, Y., Lai, K.K.: Hybrid approaches based on LSSVR model for container throughput forecasting: a comparative study. Appl. Soft Comput. 13, 2232–2241 (2013)

    Article  Google Scholar 

  17. Geng, J., Li, M.-W., Dong, Z.-H., Liao, Y.-S.: Port throughput forecasting by MARS-RSVR with chaotic simulated annealing particle swarm optimization algorithm. Neurocomputing. 147, 239–250 (2015)

    Article  Google Scholar 

  18. Ruiz-Aguilar, J.J., Turias, I.J., Jiménez-Come, M.J.: A two-stage procedure for forecasting freight inspections at Border Inspection Posts using SOMs and support vector regression. Int. J. Prod. Res. 53, 2119–2130 (2015)

    Article  Google Scholar 

  19. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2002)

    Google Scholar 

  20. Bergmeir, C., Hyndman, R.J., Benítez, J.M.: Bagging exponential smoothing methods using STL decomposition and Box-Cox transformation. Int. J. Forecast. 32, 303–312 (2016)

    Article  Google Scholar 

  21. Fisher, R.A.: Statistical Methods and Scientific Inference. Hafner Publishing Co, Oxford (1956)

    Google Scholar 

  22. Kourentzes, N., Barrow, D.K., Crone, S.F.: Neural network ensemble operators for time series forecasting. Expert Syst. Appl. 41, 4235–4244 (2014)

    Article  Google Scholar 

  23. Schapire, R.E.: The strength of weak learnability. Mach. Learn. 5, 197–227 (1990)

    Article  Google Scholar 

  24. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Proceedings of the ICML, pp. 148–156 (1996)

    Google Scholar 

  25. Breiman, L.: Bagging predictors. Mach. Learn. 24, 123–140 (1996)

    Article  Google Scholar 

  26. Moscoso-López, J.A., Ruiz-Aguilar, J.J., Turias, I., Cerbán, M., Jiménez-Come, M.J.: A comparison of forecasting methods for ro-ro traffic: a case study in the strait of gibraltar. In: Proceedings of the Ninth International Conference on Dependability and Complex Systems DepCoS-RELCOMEX, 30 June–4 July, 2014, Brunów, Poland, pp. 345–353. Springer (2014)

    Chapter  Google Scholar 

  27. Ruiz-Aguilar, J.J., Turias, I.J., Moscoso-López, J.A., Come, M.J.J., Cerbán, M.M.: Forecasting of short-term flow freight congestion: A study case of Algeciras Bay Port (Spain) (2016). http://www.revistas.unal.edu.co/index.php/dyna/article/view/47027

Download references

Acknowledgments

This work is part of the coordinated research projects TIN2014-58516-C2-1-R and TIN2014-58516-C2-2-R supported by (MICINN Ministerio de Economía y Competi-tividad-Spain). The data have been kindly provided by Port Authority of Algeciras Bay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Antonio Moscoso-López .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moscoso-López, J.A., Turias, I.J., Aguilar, J.J.R., Gonzalez-Enrique, F.J. (2019). SVR-Ensemble Forecasting Approach for Ro-Ro Freight at Port of Algeciras (Spain). In: Graña, M., et al. International Joint Conference SOCO’18-CISIS’18-ICEUTE’18. SOCO’18-CISIS’18-ICEUTE’18 2018. Advances in Intelligent Systems and Computing, vol 771. Springer, Cham. https://doi.org/10.1007/978-3-319-94120-2_34

Download citation

Publish with us

Policies and ethics