[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Fall Detection Analysis Using a Real Fall Dataset

  • Conference paper
  • First Online:
International Joint Conference SOCO’18-CISIS’18-ICEUTE’18 (SOCO’18-CISIS’18-ICEUTE’18 2018)

Abstract

This study focuses on the performance of a fall detection method using data coming from real falls performed by relatively young people and the application of this technique in the case of an elder person. Although the vast majority of studies concerning fall detection place the sensory on the waist, in this research the wearable device must be placed on the wrist because it’s usability. A first pre-processing stage is carried out as stated in [1, 17]; this stage detects the most relevant points to label. This study analyzes the suitability of different models in solving this classification problem: a feed-forward Neural Network and a rule based system generated with the C5.0 algorithm. A discussion about the results and the deployment issues is included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbate, S., Avvenuti, M., Bonatesta, F., Cola, G., Corsini, P., Vecchio, A.: A smartphone-based fall detection system. Pervasive Mob. Comput. 8(6), 883–899 (2012)

    Article  Google Scholar 

  2. Abbate, S., Avvenuti, M., Corsini, P., Light, J., Vecchio, A.: Wireless Sensor Networks: Application - Centric Design. In: Monitoring of human movements for fall detection and activities recognition in elderly care using wireless sensor network: a survey, p. 22. Intech (2010)

    Google Scholar 

  3. Bianchi, F., Redmond, S.J., Narayanan, M.R., Cerutti, S., Lovell, N.H.: Barometric pressure and triaxial accelerometry-based falls event detection. IEEE Trans. Neural Syst. Rehab. Eng. 18(6), 619–627 (2010)

    Article  Google Scholar 

  4. Bourke, A., O’Brien, J., Lyons, G.: Evaluation of a threshold-based triaxial accelerometer fall detection algorithm. Gait Posture 26, 194–199 (2007)

    Article  Google Scholar 

  5. Casilari, E., Santoyo-Ramón, J.A., Cano-García, J.M.: Umafall: a multisensor dataset for the research on automatic fall detection. Procedia Comput. Sci. 110(Supplement C), 32–39 (2017). http://www.sciencedirect.com/science/article/pii/S1877050917312899

    Article  Google Scholar 

  6. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  Google Scholar 

  7. Daher, M., Diab, A., Najjar, M.E.B.E., Khalil, M.A., Charpillet, F.: Elder tracking and fall detection system using smart tiles. IEEE Sens. J. 17(2), 469–479 (2017). http://ieeexplore.ieee.org/document/7733127/

    Article  Google Scholar 

  8. Delahoz, Y.S., Labrador, M.A.: Survey on fall detection and fall prevention using wearable and external sensors. Sensors 14(10), 19806–19842 (2014). http://www.mdpi.com/1424-8220/14/10/19806/htm

    Article  Google Scholar 

  9. Fang, Y.C., Dzeng, R.J.: A smartphone-based detection of fall portents for construction workers. Procedia Eng. 85, 147–156 (2014)

    Article  Google Scholar 

  10. Fang, Y.C., Dzeng, R.J.: Accelerometer-based fall-portent detection algorithm for construction tiling operation. Autom. Constr. 84, 214–230 (2017)

    Article  Google Scholar 

  11. González, S., Sedano, J., Villar, J.R., Corchado, E., Herrero, Á., Baruque, B.: Features and models for human activity recognition. Neurocomputing 167, 52–60 (2015)

    Article  Google Scholar 

  12. Hakim, A., Huq, M.S., Shanta, S., Ibrahim, B.: Smartphone based data mining for fall detection: Analysis and design. Procedia Comput. Sci. 105, 46–51 (2017). http://www.sciencedirect.com/science/article/pii/S1877050917302065

    Article  Google Scholar 

  13. Huynh, Q.T., Nguyen, U.D., Irazabal, L.B., Ghassemian, N., Tran, B.Q.: Optimization of an accelerometer and gyroscope-based fall detection algorithm. J. Sens. 2015, 8 (2015)

    Article  Google Scholar 

  14. Igual, R., Medrano, C., Plaza, I.: Challenges, issues and trends in fall detection systems. BioMed. Eng. OnLine 12(1), 66 (2013). http://www.biomedical-engineering-online.com/content/12/1/66

    Article  Google Scholar 

  15. Igual, R., Medrano, C., Plaza, I.: A comparison of public datasets for acceleration-based fall detection. Med. Eng. Phys. 37(9), 870–878 (2015). http://www.sciencedirect.com/science/article/pii/S1350453315001575

    Article  Google Scholar 

  16. Kangas, M., Konttila, A., Lindgren, P., Winblad, I., Jämsaä, T.: Comparison of low-complexity fall detection algorithms for body attached accelerometers. Gait Posture 28, 285–291 (2008)

    Article  Google Scholar 

  17. Khojasteh, S.B., Villar, J.R., de la Cal, E., González, V.M., Sedano, J., Yazg̈an, H.R.: Evaluation of a Wrist-based Wearable Fall Detection Method. In: 13th International Conference on Soft Computing Models in Industrial and Environmental Applications (2018, submitted)

    Google Scholar 

  18. Kuhn, M.: The caret package (2017). http://topepo.github.io/caret/index.html. Accessed 15 Jan 2018

  19. Kumari, P., Mathew, L., Syal, P.: Increasing trend of wearables and multimodal interface for human activity monitoring: a review. Biosens. Bioelectron. 90(15), 298–307 (2017)

    Article  Google Scholar 

  20. Purch.com: Top ten reviews for fall detection of seniors (2018). http://www.toptenreviews.com/health/senior-care/best-fall-detection-sensors/

  21. R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2008). http://www.R-project.org. ISBN 3-900051-07-0

  22. Sabatini, A.M., Ligorio, G., Mannini, A., Genovese, V., Pinna, L.: Prior-to- and post-impact fall detection using inertial and barometric altimeter measurements. IEEE Trans. Neural Syst. Rehab. Eng. 24, 774–783 (2016)

    Article  Google Scholar 

  23. Sorvala, A., Alasaarela, E., Sorvoja, H., Myllyla, R.: A two-threshold fall detection algorithm for reducing false alarms. In: Proceedings of 2012 6th International Symposium on Medical Information and Communication Technology (ISMICT) (2012)

    Google Scholar 

  24. Vergara, P.M., de la Cal, E., Villar, J.R., González, V.M., Sedano, J.: An iot platform for epilepsy monitoring and supervising. J. Sens. 2017, 18 (2017)

    Article  Google Scholar 

  25. Villar, J.R., González, S., Sedano, J., Chira, C., Trejo, J.: Human Activity Recognition and Feature Selection for Stroke Early Diagnosis. In: Pan, J.S., Polycarpou, M.M., Woźniak, M., de Carvalho, A.C.P.L.F., Quintián, H., Corchado, E. (eds.) HAIS 2013. LNCS (LNAI), vol. 8073, pp. 659–668. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40846-5_66

    Google Scholar 

  26. Villar, J.R., González, S., Sedano, J., Chira, C., Trejo-Gabriel-Galán, J.M.: Improving human activity recognition and its application in early stroke diagnosis. Int. J. Neural Syst. 25(4), 1450036–1450055 (2015)

    Article  Google Scholar 

  27. Wu, F., Zhao, H., Zhao, Y., Zhong, H.: Development of a wearable-sensor-based fall detection system. Int. J. Telemedicine Appl. 2015, 11 (2015). https://www.hindawi.com/journals/ijta/2015/576364/

    Google Scholar 

  28. Zhang, S., Wei, Z., Nie, J., Huang, L., Wang, S., Li, Z.: A review on human activity recognition using vision-based method. J. Healthc. Eng. 2017, 31 (2017)

    Article  Google Scholar 

  29. Zhang, T., Wang, J., Xu, L., Liu, P.: Fall detection by wearable sensor and one-class svm algorithm. In: Huang, D.S., Li, K., Irwin, G. (eds.) Intelligent Computing in Signal Processing and Pattern Recognition, Lecture Notes in Control and Information Systems, vol. 345, pp. 858–863. Springer, Berlin Heidelberg (2006)

    Google Scholar 

Download references

Acknowledgment

This research has been funded by the Spanish Ministry of Science and Innovation, under project MINECO-TIN2014-56967-R and MINECO-TIN2017-84804-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José R. Villar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khojasteh, S.B., Villar, J.R., de la Cal, E., González, V.M., Sedano, J. (2019). Fall Detection Analysis Using a Real Fall Dataset. In: Graña, M., et al. International Joint Conference SOCO’18-CISIS’18-ICEUTE’18. SOCO’18-CISIS’18-ICEUTE’18 2018. Advances in Intelligent Systems and Computing, vol 771. Springer, Cham. https://doi.org/10.1007/978-3-319-94120-2_32

Download citation

Publish with us

Policies and ethics