Abstract
This study focuses on the performance of a fall detection method using data coming from real falls performed by relatively young people and the application of this technique in the case of an elder person. Although the vast majority of studies concerning fall detection place the sensory on the waist, in this research the wearable device must be placed on the wrist because it’s usability. A first pre-processing stage is carried out as stated in [1, 17]; this stage detects the most relevant points to label. This study analyzes the suitability of different models in solving this classification problem: a feed-forward Neural Network and a rule based system generated with the C5.0 algorithm. A discussion about the results and the deployment issues is included.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abbate, S., Avvenuti, M., Bonatesta, F., Cola, G., Corsini, P., Vecchio, A.: A smartphone-based fall detection system. Pervasive Mob. Comput. 8(6), 883–899 (2012)
Abbate, S., Avvenuti, M., Corsini, P., Light, J., Vecchio, A.: Wireless Sensor Networks: Application - Centric Design. In: Monitoring of human movements for fall detection and activities recognition in elderly care using wireless sensor network: a survey, p. 22. Intech (2010)
Bianchi, F., Redmond, S.J., Narayanan, M.R., Cerutti, S., Lovell, N.H.: Barometric pressure and triaxial accelerometry-based falls event detection. IEEE Trans. Neural Syst. Rehab. Eng. 18(6), 619–627 (2010)
Bourke, A., O’Brien, J., Lyons, G.: Evaluation of a threshold-based triaxial accelerometer fall detection algorithm. Gait Posture 26, 194–199 (2007)
Casilari, E., Santoyo-Ramón, J.A., Cano-García, J.M.: Umafall: a multisensor dataset for the research on automatic fall detection. Procedia Comput. Sci. 110(Supplement C), 32–39 (2017). http://www.sciencedirect.com/science/article/pii/S1877050917312899
Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)
Daher, M., Diab, A., Najjar, M.E.B.E., Khalil, M.A., Charpillet, F.: Elder tracking and fall detection system using smart tiles. IEEE Sens. J. 17(2), 469–479 (2017). http://ieeexplore.ieee.org/document/7733127/
Delahoz, Y.S., Labrador, M.A.: Survey on fall detection and fall prevention using wearable and external sensors. Sensors 14(10), 19806–19842 (2014). http://www.mdpi.com/1424-8220/14/10/19806/htm
Fang, Y.C., Dzeng, R.J.: A smartphone-based detection of fall portents for construction workers. Procedia Eng. 85, 147–156 (2014)
Fang, Y.C., Dzeng, R.J.: Accelerometer-based fall-portent detection algorithm for construction tiling operation. Autom. Constr. 84, 214–230 (2017)
González, S., Sedano, J., Villar, J.R., Corchado, E., Herrero, Á., Baruque, B.: Features and models for human activity recognition. Neurocomputing 167, 52–60 (2015)
Hakim, A., Huq, M.S., Shanta, S., Ibrahim, B.: Smartphone based data mining for fall detection: Analysis and design. Procedia Comput. Sci. 105, 46–51 (2017). http://www.sciencedirect.com/science/article/pii/S1877050917302065
Huynh, Q.T., Nguyen, U.D., Irazabal, L.B., Ghassemian, N., Tran, B.Q.: Optimization of an accelerometer and gyroscope-based fall detection algorithm. J. Sens. 2015, 8 (2015)
Igual, R., Medrano, C., Plaza, I.: Challenges, issues and trends in fall detection systems. BioMed. Eng. OnLine 12(1), 66 (2013). http://www.biomedical-engineering-online.com/content/12/1/66
Igual, R., Medrano, C., Plaza, I.: A comparison of public datasets for acceleration-based fall detection. Med. Eng. Phys. 37(9), 870–878 (2015). http://www.sciencedirect.com/science/article/pii/S1350453315001575
Kangas, M., Konttila, A., Lindgren, P., Winblad, I., Jämsaä, T.: Comparison of low-complexity fall detection algorithms for body attached accelerometers. Gait Posture 28, 285–291 (2008)
Khojasteh, S.B., Villar, J.R., de la Cal, E., González, V.M., Sedano, J., Yazg̈an, H.R.: Evaluation of a Wrist-based Wearable Fall Detection Method. In: 13th International Conference on Soft Computing Models in Industrial and Environmental Applications (2018, submitted)
Kuhn, M.: The caret package (2017). http://topepo.github.io/caret/index.html. Accessed 15 Jan 2018
Kumari, P., Mathew, L., Syal, P.: Increasing trend of wearables and multimodal interface for human activity monitoring: a review. Biosens. Bioelectron. 90(15), 298–307 (2017)
Purch.com: Top ten reviews for fall detection of seniors (2018). http://www.toptenreviews.com/health/senior-care/best-fall-detection-sensors/
R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2008). http://www.R-project.org. ISBN 3-900051-07-0
Sabatini, A.M., Ligorio, G., Mannini, A., Genovese, V., Pinna, L.: Prior-to- and post-impact fall detection using inertial and barometric altimeter measurements. IEEE Trans. Neural Syst. Rehab. Eng. 24, 774–783 (2016)
Sorvala, A., Alasaarela, E., Sorvoja, H., Myllyla, R.: A two-threshold fall detection algorithm for reducing false alarms. In: Proceedings of 2012 6th International Symposium on Medical Information and Communication Technology (ISMICT) (2012)
Vergara, P.M., de la Cal, E., Villar, J.R., González, V.M., Sedano, J.: An iot platform for epilepsy monitoring and supervising. J. Sens. 2017, 18 (2017)
Villar, J.R., González, S., Sedano, J., Chira, C., Trejo, J.: Human Activity Recognition and Feature Selection for Stroke Early Diagnosis. In: Pan, J.S., Polycarpou, M.M., Woźniak, M., de Carvalho, A.C.P.L.F., Quintián, H., Corchado, E. (eds.) HAIS 2013. LNCS (LNAI), vol. 8073, pp. 659–668. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40846-5_66
Villar, J.R., González, S., Sedano, J., Chira, C., Trejo-Gabriel-Galán, J.M.: Improving human activity recognition and its application in early stroke diagnosis. Int. J. Neural Syst. 25(4), 1450036–1450055 (2015)
Wu, F., Zhao, H., Zhao, Y., Zhong, H.: Development of a wearable-sensor-based fall detection system. Int. J. Telemedicine Appl. 2015, 11 (2015). https://www.hindawi.com/journals/ijta/2015/576364/
Zhang, S., Wei, Z., Nie, J., Huang, L., Wang, S., Li, Z.: A review on human activity recognition using vision-based method. J. Healthc. Eng. 2017, 31 (2017)
Zhang, T., Wang, J., Xu, L., Liu, P.: Fall detection by wearable sensor and one-class svm algorithm. In: Huang, D.S., Li, K., Irwin, G. (eds.) Intelligent Computing in Signal Processing and Pattern Recognition, Lecture Notes in Control and Information Systems, vol. 345, pp. 858–863. Springer, Berlin Heidelberg (2006)
Acknowledgment
This research has been funded by the Spanish Ministry of Science and Innovation, under project MINECO-TIN2014-56967-R and MINECO-TIN2017-84804-R.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Khojasteh, S.B., Villar, J.R., de la Cal, E., González, V.M., Sedano, J. (2019). Fall Detection Analysis Using a Real Fall Dataset. In: Graña, M., et al. International Joint Conference SOCO’18-CISIS’18-ICEUTE’18. SOCO’18-CISIS’18-ICEUTE’18 2018. Advances in Intelligent Systems and Computing, vol 771. Springer, Cham. https://doi.org/10.1007/978-3-319-94120-2_32
Download citation
DOI: https://doi.org/10.1007/978-3-319-94120-2_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-94119-6
Online ISBN: 978-3-319-94120-2
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)