[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Constructing a Chinese Conversation Corpus for Sentiment Analysis

  • Conference paper
  • First Online:
Natural Language Processing and Chinese Computing (NLPCC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10619))

Abstract

Sentiment analysis plays an important role in many applications. This paper introduces our ongoing work related to the sentiment analysis on Chinese conversation. The main purpose is to construct a Chinese conversation corpus for sentiment analysis and provide a benchmark result on this corpus. To explore the effectiveness of machine learning based approaches for sentiment analysis on Chinese conversation, we firstly collected conversational data from some online English learning websites and our instant messages, and manually annotated it with three sentiment polarities and 22 fine-grained emotion classes. Then we applied multiple representative classification methods to evaluate the corpus. The evaluation results provide good suggestions for the future research. And we will release the corpus with gold standards publicly for research purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://talk.oralpractice.com/.

  2. 2.

    http://talk.tingvoa.com/.

  3. 3.

    https://github.com/njoe9/ccsa.

  4. 4.

    http://www.csie.ntu.edu.tw/~cjlin/liblinear/.

  5. 5.

    https://github.com/fxsjy/jieba.

References

  1. Husin, N., Abdullah, M.T., Mahmod, R.: A systematic literature review for topic detection in chat conversation for cyber-crime investigation. Int. J. Digit. Content Technol. Appl. 8(3), 22 (2014)

    Google Scholar 

  2. Zhao, Y., Qin, B., Liu, T.: Creating a fine-grained corpus for chinese sentiment analysis. IEEE Intell. Syst. 30(1), 36–43 (2015)

    Article  Google Scholar 

  3. Zhang, L., Chen, C.: Sentiment classification with convolutional neural networks: an experimental study on a large-scale Chinese conversation corpus. In: 12th International Conference on Computational Intelligence and Security (CIS 2016), pp. 165–169 (2016)

    Google Scholar 

  4. Socher, R., Perelygin, A., Wu, J.Y., Chuang, J., Manning, C.D., Ng, A.Y., Potts, C., et al.: Recursive deep models for semantic compositionality over a sentiment treebank. In: EMNLP 2013, vol. 1631, p. 1642 (2013)

    Google Scholar 

  5. Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A convolutional neural network for modelling sentences. In: Proceedings of the 52nd ACL, pp. 655–665 (2014)

    Google Scholar 

  6. Tang, D., Qin, B., Liu, T.: Document modeling with gated recurrent neural network for sentiment classification. In: EMNLP 2015, pp. 1422–1432 (2015)

    Google Scholar 

  7. Chen, H., Sun, M., Tu, C., Lin, Y., Liu, Z.: Neural sentiment classification with user and product attention. In: EMNLP 2016, pp. 1650–1659 (2016)

    Google Scholar 

  8. Quan, C., Ren, F.: Construction of a blog emotion corpus for Chinese emotional expression analysis. In: EMNLP 2009, pp. 1446–1454 (2009)

    Google Scholar 

  9. Li, C., Xu, B., Wu, G., He, S., Tian, G., Hao, H.: Recursive deep learning for sentiment analysis over social data. In: 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), vol. 1, pp. 180–185 (2014)

    Google Scholar 

  10. Liao, X., Li, B., Xu, L.: Overview of topic-based Chinese message polarity classification in SIGHAN 2015. In: ACL-IJCNLP 2015, p. 56 (2015)

    Google Scholar 

  11. Peng, H., Cambria, E., Hussain, A.: A review of sentiment analysis research in Chinese language. Cogn. Comput. 9(4), 1–13 (2017)

    Article  Google Scholar 

  12. Lai, S., Xu, L., Liu, K., Zhao, J.: Recurrent convolutional neural networks for text classification. In: AAAI 2015, pp. 2267–2273 (2015)

    Google Scholar 

  13. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text classification. CoRR abs/1607.01759 (2016)

    Google Scholar 

  14. Zhang, X., Zhao, J., LeCun, Y.: Character-level convolutional networks for text classification. In: NIPS 2015, pp. 649–657 (2015)

    Google Scholar 

  15. Kim, Y.: Convolutional neural networks for sentence classification. In: EMNLP 2014, pp. 1746–1751 (2014)

    Google Scholar 

  16. Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical attention networks for document classification. In: NAACL HLT 2016 (2016)

    Google Scholar 

  17. Zhou, Y., Xu, J., Cao, J., Xu, B., Li, C., Xu, B.: Hybrid attention networks for Chinese short text classification. In: CICLing 2017 (2017)

    Google Scholar 

  18. Zhou, Y., Xu, B., Xu, J., Yang, L., Li, C., Xu, B.: Compositional recurrent neural networks for Chinese short text classification. In: 2016 IEEE/WIC/ACM International Conference on Web Intelligence, pp. 137–144 (2016)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation (No. 61602479), National High Technology Research and Development Program of China (No. 2015AA015402) and National Key Technology R&D Program of China under No. 2015BAH53F02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changliang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, Y., Li, C., Xu, B., Xu, J., Yang, L., Xu, B. (2018). Constructing a Chinese Conversation Corpus for Sentiment Analysis. In: Huang, X., Jiang, J., Zhao, D., Feng, Y., Hong, Y. (eds) Natural Language Processing and Chinese Computing. NLPCC 2017. Lecture Notes in Computer Science(), vol 10619. Springer, Cham. https://doi.org/10.1007/978-3-319-73618-1_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73618-1_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73617-4

  • Online ISBN: 978-3-319-73618-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics