[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Automatic Image Cropping and Selection Using Saliency: An Application to Historical Manuscripts

  • Conference paper
  • First Online:
Digital Libraries and Multimedia Archives (IRCDL 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 806))

Included in the following conference series:

Abstract

Automatic image cropping techniques are particularly important to improve the visual quality of cropped images and can be applied to a wide range of applications such as photo-editing, image compression, and thumbnail selection. In this paper, we propose a saliency-based image cropping method which produces significant cropped images by only relying on the corresponding saliency maps. Experiments on standard image cropping datasets demonstrate the benefit of the proposed solution with respect to other cropping methods. Moreover, we present an image selection method that can be effectively applied to automatically select the most representative pages of historical manuscripts thus improving the navigation of historical digital libraries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://bibliotecaestense.beniculturali.it.

References

  1. Avidan, S., Shamir, A.: Seam carving for content-aware image resizing. ACM Trans. Graph. 26(3), 10 (2007)

    Article  Google Scholar 

  2. Balducci, F., Grana, C.: Affective classification of gaming activities coming from RPG gaming sessions. In: Tian, F., Gatzidis, C., El Rhalibi, A., Tang, W., Charles, F. (eds.) Edutainment 2017. LNCS, vol. 10345, pp. 93–100. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65849-0_11

    Chapter  Google Scholar 

  3. Bhattacharya, S., Sukthankar, R., Shah, M.: A framework for photo-quality assessment and enhancement based on visual aesthetics. In: ACM International Conference on Multimedia (2010)

    Google Scholar 

  4. Bolelli, F.: Indexing of historical document images: ad hoc dewarping technique for handwritten text. In: Grana, C., Baraldi, L. (eds.) IRCDL 2017. CCIS, vol. 733, pp. 45–55. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68130-6_4

    Chapter  Google Scholar 

  5. Chen, J., Bai, G., Liang, S., Li, Z.: Automatic image cropping: a computational complexity study. In: IEEE International Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  6. Chen, Y.L., Huang, T.W., Chang, K.H., Tsai, Y.C., Chen, H.T., Chen, B.Y.: Quantitative analysis of automatic image cropping algorithms: a dataset and comparative study. In: Winter Conference on Applications of Computer Vision (2017)

    Google Scholar 

  7. Chen, Y.L., Klopp, J., Sun, M., Chien, S.Y., Ma, K.L.: Learning to compose with professional photographs on the web. arXiv preprint arXiv:1702.00503 (2017)

  8. Cheng, B., Ni, B., Yan, S., Tian, Q.: Learning to photograph. In: ACM International Conference on Multimedia (2010)

    Google Scholar 

  9. Ciocca, G., Cusano, C., Gasparini, F., Schettini, R.: Self-adaptive image cropping for small displays. IEEE Trans. Consum. Electron. 53(4), 1622–1627 (2007)

    Article  Google Scholar 

  10. Cornia, M., Baraldi, L., Serra, G., Cucchiara, R.: A deep multi-level network for saliency prediction. In: International Conference on Pattern Recognition (2016)

    Google Scholar 

  11. Cornia, M., Baraldi, L., Serra, G., Cucchiara, R.: Multi-level net: a visual saliency prediction model. In: European Conference on Computer Vision Workshops (2016)

    Google Scholar 

  12. Cornia, M., Baraldi, L., Serra, G., Cucchiara, R.: Predicting human eye fixations via an LSTM-based saliency attentive model. arXiv preprint arXiv:1611.09571 (2017)

  13. Cucchiara, R., Grana, C., Prati, A.: Semantic transcoding for live video server. In: ACM International Conference on Multimedia (2002)

    Google Scholar 

  14. Kang, H.W., Hua, X.S.: To learn representativeness of video frames. In: ACM International Conference on Multimedia (2005)

    Google Scholar 

  15. Ke, Y., Tang, X., Jing, F.: The design of high-level features for photo quality assessment. In: IEEE International Conference on Computer Vision and Pattern Recognition (2006)

    Google Scholar 

  16. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  17. Li, D., Wu, H., Zhang, J., Huang, K.: A2-RL: aesthetics aware reinforcement learning for automatic image cropping. arXiv preprint arXiv:1709.04595 (2017)

  18. Liu, C., Huang, Q., Jiang, S.: Query sensitive dynamic web video thumbnail generation. In: IEEE International Conference on Image Processing (2011)

    Google Scholar 

  19. Liu, W., Mei, T., Zhang, Y., Che, C., Luo, J.: Multi-task deep visual-semantic embedding for video thumbnail selection. In: IEEE International Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  20. Luo, J., Papin, C., Costello, K.: Towards extracting semantically meaningful key frames from personal video clips: from humans to computers. IEEE Trans. Circ. Syst. Video Technol. 19(2), 289–301 (2009)

    Article  Google Scholar 

  21. Ma, M., Guo, J.K.: Automatic image cropping for mobile device with built-in camera. In: Consumer Communications and Networking Conference (2004)

    Google Scholar 

  22. Nishiyama, M., Okabe, T., Sato, Y., Sato, I.: Sensation-based photo cropping. In: ACM International Conference on Multimedia (2009)

    Google Scholar 

  23. Park, J., Lee, J.Y., Tai, Y.W., Kweon, I.S.: Modeling photo composition and its application to photo re-arrangement. In: IEEE International Conference on Image Processing (2012)

    Google Scholar 

  24. Santella, A., Agrawala, M., DeCarlo, D., Salesin, D., Cohen, M.: Gaze-based interaction for semi-automatic photo cropping. In: SIGCHI Conference on Human Factors in Computing Systems (2006)

    Google Scholar 

  25. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  26. Stentiford, F.: Attention based auto image cropping. In: Workshop on Computational Attention and Applications, ICVS (2007)

    Google Scholar 

  27. Suh, B., Ling, H., Bederson, B.B., Jacobs, D.W.: Automatic thumbnail cropping and its effectiveness. In: ACM Symposium on User Interface Software and Technology (2003)

    Google Scholar 

  28. Tang, X., Luo, W., Wang, X.: Content-based photo quality assessment. IEEE Trans. Multimed. 15(8), 1930–1943 (2013)

    Article  Google Scholar 

  29. Wang, M., Hong, R., Li, G., Zha, Z.J., Yan, S., Chua, T.S.: Event driven web video summarization by tag localization and key-shot identification. IEEE Trans. Multimed. 14(4), 975–985 (2012)

    Article  Google Scholar 

  30. Yan, J., Lin, S., Bing Kang, S., Tang, X.: Learning the change for automatic image cropping. In: IEEE International Conference on Computer Vision and Pattern Recognition (2013)

    Google Scholar 

  31. Zhang, L., Song, M., Zhao, Q., Liu, X., Bu, J., Chen, C.: Probabilistic graphlet transfer for photo cropping. IEEE Trans. Image Process. 22(2), 802–815 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang, M., Zhang, L., Sun, Y., Feng, L., Ma, W.: Auto cropping for digital photographs. In: ICME (2005)

    Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge the Estense Gallery of Modena for the availability of the digitized historical manuscripts used in this work. We also acknowledge the CINECA award under the ISCRA initiative, for the availability of high performance computing resources and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcella Cornia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cornia, M., Pini, S., Baraldi, L., Cucchiara, R. (2018). Automatic Image Cropping and Selection Using Saliency: An Application to Historical Manuscripts. In: Serra, G., Tasso, C. (eds) Digital Libraries and Multimedia Archives. IRCDL 2018. Communications in Computer and Information Science, vol 806. Springer, Cham. https://doi.org/10.1007/978-3-319-73165-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73165-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73164-3

  • Online ISBN: 978-3-319-73165-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics