[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Heuristic Based on Fuzzy Inference Systems for Multiobjective IMRT Treatment Planning

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Big Data (MOD 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10710))

Included in the following conference series:

Abstract

Radiotherapy is one of the treatments used against cancer. Each treatment has to be planned considering the medical prescription for each specific patient and the information contained in the patient’s medical images. The medical prescription usually is composed by a set of dosimetry constraints, imposing maximum or minimum radiation doses that should be satisfied. Treatment planning is a trial-and-error time consuming process, where the planner has to tune several parameters (like weights and bounds) until an admissible plan is found. Radiotherapy treatment planning can be interpreted as a multiobjective optimization problem, because besides the set of dosimetry constraints there are also several conflicting objectives: maximizing the dose deposited in the volumes to treat and, at the same time, minimizing the dose delivered to healthy cells. In this paper we present a new multiobjective optimization procedure that will, in an automated way, calculate a set of potential non-dominated treatment plans. It is also possible to consider an interactive procedure whenever the planner wants to explore new regions in the non-dominated frontier. The optimization procedure is based on fuzzy inference systems. The new methodology is described and it is applied to a head-and-neck cancer case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dias, J., Rocha, H., Ventura, T., Ferreira, B., Lopes, M.C.: Automated fluence map optimization based on fuzzy inference systems. Med. Phys. 43, 1083–1095 (2016)

    Article  Google Scholar 

  2. Li, R.-P., Yin, F.-F.: Optimization of inverse treatment planning using a fuzzy weight function. Med. Phys. 27, 691–700 (2000)

    Article  Google Scholar 

  3. Yan, H., Yin, F.-F., Guan, H., Kim, J.H.: Fuzzy logic guided inverse treatment planning. Med. Phys. 30, 2675–2685 (2003)

    Article  Google Scholar 

  4. Yan, H., Yin, F.-F., Willett, C.: Evaluation of an artificial intelligence guided inverse planning system: clinical case study. Radiother. Oncol. 83, 76–85 (2007)

    Article  Google Scholar 

  5. Stieler, F., Yan, H., Lohr, F., Wenz, F., Yin, F.-F.: Development of a neuro-fuzzy technique for automated parameter optimization of inverse treatment planning. Radiat. Oncol. 4, 39 (2009)

    Article  Google Scholar 

  6. Kierkels, R.G.J., Visser, R., Bijl, H.P., Langendijk, J.A., van’t Veld, A.A., Steenbakkers, R.J.H.M., Korevaar, E.W.: Multicriteria optimization enables less experienced planners to efficiently produce high quality treatment plans in head and neck cancer radiotherapy. Radiat. Oncol. 10, 87 (2015)

    Article  Google Scholar 

  7. Thieke, C., Kufer, K.H., Monz, M., Scherrer, A., Alonso, F., Oelfke, U., Huber, P.E., Debus, J., Bortfeld, T.: A new concept for interactive radiotherapy planning with multicriteria optimization: First clinical evaluation. Radiother. Oncol. 85, 292–298 (2007)

    Article  Google Scholar 

  8. Romeijn, H.E., Dempsey, J.F., Li, J.G.: A unifying framework for multi-criteria fluence map optimization models. Phys. Med. Biol. 49, 1991–2013 (2004)

    Article  Google Scholar 

  9. Craft, D., Halabi, T., Shih, H.A., Bortfeld, T.: An approach for practical multiobjective IMRT treatment planning. Int. J. Radiat. Oncol. Biol. Phys. 69, 1600–1607 (2007)

    Article  Google Scholar 

  10. Craft, D.L., Halabi, T.F., Shih, H.A., Bortfeld, T.R.: Approximating convex Pareto surfaces in multiobjective radiotherapy planning. Med. Phys. 33, 3399–3407 (2006)

    Article  Google Scholar 

  11. Craft, D., Richter, C.: Deliverable navigation for multicriteria step and shoot IMRT treatment planning. Phys. Med. Biol. 58, 87 (2013)

    Article  Google Scholar 

  12. Craft, D., Monz, M.: Simultaneous navigation of multiple Pareto surfaces, with an application to multicriteria IMRT planning with multiple beam angle configurations. Med. Phys. 37, 736–741 (2010)

    Article  Google Scholar 

  13. Teichert, K., Süss, P., Serna, J.I., Monz, M., Küfer, K.H., Thieke, C.: Comparative analysis of Pareto surfaces in multi-criteria IMRT planning. Phys. Med. Biol. 56, 3669 (2011)

    Article  Google Scholar 

  14. Holdsworth, C., Kim, M., Liao, J., Phillips, M.H.: A hierarchical evolutionary algorithm for multiobjective optimization in IMRT. Med. Phys. 37, 4986–4997 (2010)

    Article  Google Scholar 

  15. Holdsworth, C., Kim, M., Liao, J., Phillips, M.: The use of a multiobjective evolutionary algorithm to increase flexibility in the search for better IMRT plans. Med. Phys. 39, 2261–2274 (2012)

    Article  Google Scholar 

  16. Aubry, J.-F., Beaulieu, F., Sevigny, C., Beaulieu, L., Tremblay, D.: Multiobjective optimization with a modified simulated annealing algorithm for external beam radiotherapy treatment planning. Med. Phys. 33, 4718–4729 (2006)

    Article  Google Scholar 

  17. Breedveld, S., Storchi, P.R.M., Voet, P.W.J., Heijmen, B.J.M.: iCycle: integrated, multicriterial beam angle, and profile optimization for generation of coplanar and noncoplanar IMRT plans. Med. Phys. 39, 951–963 (2012)

    Article  Google Scholar 

  18. Deasy, J.O.: Multiple local minima in radiotherapy optimization problems with dose–volume constraints. Med. Phys. 24, 1157 (1997)

    Article  Google Scholar 

  19. Zarepisheh, M., Shakourifar, M., Trigila, G., Ghomi, P.S., Couzens, S., Abebe, A., Noreña, L., Shang, W., Jiang, S.B., Zinchenko, Y.: A moment-based approach for DVH-guided radiotherapy treatment plan optimization. Phys. Med. Biol. 58, 1869–1887 (2013)

    Article  Google Scholar 

  20. Scherrer, A., Yaneva, F., Grebe, T., Küfer, K.-H.: A new mathematical approach for handling DVH criteria in IMRT planning. J. Glob. Optim. 61, 407–428 (2014)

    Article  MathSciNet  Google Scholar 

  21. Romeijn, H.E., Ahuja, R.K., Dempsey, J.F., Kumar, A.: A new linear programming approach to radiation therapy treatment planning problems. Oper. Res. 54, 201–216 (2006)

    Article  MathSciNet  Google Scholar 

  22. Ross, T., Soland, R.: A multicriteria approach to the location of public facilities. Eur. J. Oper. Res. 4, 307–321 (1980)

    Article  MathSciNet  Google Scholar 

  23. Hoffmann, A.L., Siem, A.Y.D., den Hertog, D., Kaanders, J.H.A.M., Huizenga, H.: Derivative-free generation and interpolation of convex Pareto optimal IMRT plans. Phys. Med. Biol. 51, 6349 (2006)

    Article  Google Scholar 

  24. Deasy, J.O., Blanco, A.I., Clark, V.H.: CERR: a computational environment for radiotherapy research. Med. Phys. 30, 979–985 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Fundação para a Ciência e a Tecnologia (FCT) under project grant UID/MULTI/00308/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joana Dias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dias, J., Rocha, H., Ventura, T., Ferreira, B., do Carmo Lopes, M. (2018). A Heuristic Based on Fuzzy Inference Systems for Multiobjective IMRT Treatment Planning. In: Nicosia, G., Pardalos, P., Giuffrida, G., Umeton, R. (eds) Machine Learning, Optimization, and Big Data. MOD 2017. Lecture Notes in Computer Science(), vol 10710. Springer, Cham. https://doi.org/10.1007/978-3-319-72926-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72926-8_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72925-1

  • Online ISBN: 978-3-319-72926-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics