[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Identifying Spreading Sources and Influential Nodes of Hot Events on Social Networks

  • Conference paper
  • First Online:
Complex Networks & Their Applications VI (COMPLEX NETWORKS 2017)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 689))

Included in the following conference series:

Abstract

The rapid development of World Wide Web accelerates information spreading in various ways. Thanks to the emergence of multiple social platforms, some events which are not much attractive in the past can become social hot spots nowadays. In this paper, we study the information diffusion process of “IP MAN3 box office fraud”, which is widely diffused in the largest Chinese microblogging system, namely Sina Weibo, in March 2016. Based on the temporal metric we have proposed, we succeed in finding out the sources of the information, and constructing the panorama of the diffusion process. In addition, a portion of nodes that promote the diffusion are identified by using the node importance algorithms. Finally, the users with abnormal behaviors in the process of event development are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 199.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 249.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 249.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, X., Li, X., Chen, G.: Introduction to Network Science, pp. 232–265 (2012)

    Google Scholar 

  2. Wu, F., Huberman, B.A., Adamic, L.A., et al.: Information flow in social groups. Phys. A Stat. Mech. Appl. 337(1), 327–335 (2004)

    Article  MathSciNet  Google Scholar 

  3. Zanette, D.H.: Dynamics of rumor propagation on small-world networks. Phys. Rev. E 65(4), 041908 (2002)

    Article  Google Scholar 

  4. Moreno, Y., Nekovee, M., Pacheco, A.F.: Dynamics of rumor spreading in complex networks. Phys. Rev. E 69(6), 066130 (2004)

    Article  Google Scholar 

  5. Ren, X., Lü, L.: Review of ranking methods for important node of network. Chin. Sci. Bull. 59(13), 1175–1197 (2014)

    Article  Google Scholar 

  6. Burt, R.S., Minor, M.J.: Applied Network Analysis: A Methodological Introduction. Sage Publications, Inc (1983)

    Google Scholar 

  7. Dolev, S., Elovici, Y., Puzis, R.: Routing betweenness centrality. J. ACM (JACM) 57(4), 25 (2010)

    Google Scholar 

  8. Cheng, X.Q., Ren, F.X., Shen, H.W., et al.: Bridgeness: a local index on edge significance in maintaining global connectivity. J. Stat. Mech. Theory Exp. 2010(10), 10011 (2010)

    Article  Google Scholar 

  9. Martin, T., Zhang, X., Newman, M.E.J.: Localization and centrality in networks. Phys. Rev. E 90(5), 052808 (2014)

    Article  Google Scholar 

  10. Yuejin Tan, W., Jun, H.D.: Node contraction method for evaluating node importance in complex network. Syst. Eng. Theory Pract. 26, 79–83 (2006)

    Google Scholar 

  11. Hu, H., Zhu, J.H.: Social networks, mass media and public opinions. J. Econ. Interact. Coord., 1–19 (2015)

    Google Scholar 

  12. Xie, J.: Rumor spread in microblogging and its avoidance mechanism. J. Hefei Univ. Soc. Sci. 29(2), 51–54 (2012)

    Google Scholar 

  13. Wang, H., Han, J., Deng, L., et al.: Research on rumor spread dynamics based on mobile social network. Acta Phys. Sin. 62(11), 110505–110505 (2013)

    Google Scholar 

  14. Bao, Y., Yi, C., Xue, Y., et al.: A new rumor propagation model and control strategy on social networks. In: Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1472–1473. ACM (2013)

    Google Scholar 

  15. Zhou, D., Li, Z.: High performance web reptile: a summary of research. Comput. Sci. 36(08), 26–29 (2009)

    Google Scholar 

  16. Zhou, Z., Zhang, H., Xie, J.: Sina microblogging data crawler based on Python. J. Comput. Appl. 34(11), 3131–3134 (2014)

    Google Scholar 

  17. Zhou, L., Lin, L.: A summary of the research on crawler technology. J. Comput. Appl. 25(9), 1965–1969 (2005)

    Google Scholar 

  18. Li, G., Gan, T., Guang, Z.: Identifying network pushing hands based on text emotion classification. Libr. Inf. Syst. 54(8), 77–80 (2010)

    Google Scholar 

  19. Bonacich, P.: Factoring and weighting approaches to status scores and clique identification. J. Math. Sociol. 2(1), 113–120 (1972)

    Article  Google Scholar 

  20. Chen, D.B., Gao, H., Lü, L., et al.: Identifying influential nodes in large-scale directed networks: the role of clustering. PloS One 8(10), e77455 (2013)

    Article  Google Scholar 

  21. Kitsak, M., Gallos, L.K., Havlin, S., et al.: Identification of influential spreaders in complex networks. Nat. Phys. 6(11), 888–893 (2010)

    Article  Google Scholar 

  22. Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw. 1(3), 215–239 (1978)

    Article  Google Scholar 

  23. Zeng, A., Zhang, C.J.: Ranking spreaders by decomposing complex networks. Phys. Lett. A 377, 1031–1035 (2013)

    Article  Google Scholar 

  24. Liu, J.G., Ren, Z.M., Guo, Q.: Ranking the spreading influence in complex networks. Phys. A 392, 4154–4159 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Zhejiang Provincial Natural Science Foundation of China (Grant Nos. LR18A050001, LY18A050004 and LQ16F030006), Natural Science Foundation of China (Grant Nos. 61673151 and 11671241) and the EUFP7 Grant 611272 (project GROWTHCOM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zi-Ke Zhang .

Editor information

Editors and Affiliations

Appendix

Appendix

Abnormal users information

Anonymous ID

Anonymous name

Type

97394430

Media 5

Official medias

699174196

Media 10

731638928

Media 11

853079662

Media 12

708870469

Media 13

617383185

Media 14

612128353

Media 4

119305779

Media 15

206755762

Enterprise user 1

Enterprise users

197819660

Enterprise user 2

124872340

Enterprise user 3

144799753

Enterprise user 4

210073340

Enterprise user 5

735707880

Enterprise user 6

657976480

Enterprise user 7

666111015

Enterprise user 8

200485887

Enterprise user 9

194044453

Enterprise user10

207588018

Enterprise user11

203921855

Enterprise user12

784250235

Enterprise user13

209345803

Enterprise user14

654156459

We Media2

We media

609509321

We Media 4

786955035

Columnist2

Columnist

512500175

Columnist3

505128349

Ordinary user 17

Ordinary user

205250357

Ordinary user 18

213261996

Ordinary user 19

665988504

Ordinary user 20

441603440

Ordinary user 21

657288882

Ordinary user 22

202591342

Ordinary user 23

803846391

Ordinary user 24

611645649

Ordinary user 25

110999748

Ordinary user 26

772151948

Ordinary user 27

816024305

Ordinary user 28

202048903

Ordinary user 29

806147150

Ordinary user 8

701165025

Ordinary user 30

707565922

Ordinary user 14

116682933

Ordinary user 31

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, N., Zhan, XX., Ma, Q., Lin, S., Zhang, J., Zhang, ZK. (2018). Identifying Spreading Sources and Influential Nodes of Hot Events on Social Networks. In: Cherifi, C., Cherifi, H., Karsai, M., Musolesi, M. (eds) Complex Networks & Their Applications VI. COMPLEX NETWORKS 2017. Studies in Computational Intelligence, vol 689. Springer, Cham. https://doi.org/10.1007/978-3-319-72150-7_76

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72150-7_76

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72149-1

  • Online ISBN: 978-3-319-72150-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics