Abstract
Team semantics is the mathematical framework of modern logics of dependence and independence in which formulae are interpreted by sets of assignments (teams) instead of single assignments as in first-order logic. In order to deepen the fruitful interplay between team semantics and database dependency theory, we define Polyteam Semantics in which formulae are evaluated over a family of teams. We begin by defining a novel polyteam variant of dependence atoms and give a finite axiomatisation for the associated implication problem. We also characterise the expressive power of poly-dependence logic by properties of polyteams that are downward closed and definable in existential second-order logic (\(\mathsf {ESO}\)). The analogous result is shown to hold for poly-independence logic and all \(\mathsf {ESO}\)-definable properties.
This research was supported by a Marsden grant from Government funding, administered by the Royal Society of New Zealand, and grants 292767 and 308712 of the Academy of Finland.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Armstrong, W.W.: Dependency structures of data base relationships. In: Proceedings of IFIP World Computer Congress, pp. 580–583 (1974)
Casanova, M.A., Fagin, R., Papadimitriou, C.H.: Inclusion dependencies and their interaction with functional dependencies. J. Comput. Syst. Sci. 28(1), 29–59 (1984)
Durand, A., Hannula, M., Kontinen, J., Meier, A., Virtema, J.: Approximation and dependence via multiteam semantics. In: Gyssens, M., Simari, G. (eds.) FoIKS 2016. LNCS, vol. 9616, pp. 271–291. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30024-5_15
Durand, A., Kontinen, J., Vollmer, H.: Expressivity and complexity of dependence logic. In: Abramsky, S., Kontinen, J., Väänänen, J., Vollmer, H. (eds.) Dependence Logic: Theory and Applications, pp. 5–32. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31803-5_2
Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and query answering. Theoret. Comput. Sci. 336(1), 89–124 (2005)
Galliani, P.: Inclusion and exclusion dependencies in team semantics: on some logics of imperfect information. Ann. Pure Appl. Logic 163(1), 68–84 (2012)
Galliani, P., Hella, L.: Inclusion logic and fixed point logic. In: Proceedings of CSL, pp. 281–295 (2013)
Geiger, D., Paz, A., Pearl, J.: Axioms and algorithms for inferences involving probabilistic independence. Inf. Comput. 91(1), 128–141 (1991)
Grädel, E., Väänänen, J.A.: Dependence and independence. Studia Logica 101(2), 399–410 (2013)
Hannula, M.: Axiomatizing first-order consequences in independence logic. Ann. Pure Appl. Logic 166(1), 61–91 (2015)
Hannula, M.: Reasoning about embedded dependencies using inclusion dependencies. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol. 9450, pp. 16–30. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48899-7_2
Hannula, M., Kontinen, J.: A finite axiomatization of conditional independence and inclusion dependencies. Inf. Comput. 249, 121–137 (2016)
Hannula, M., Kontinen, J., Link, S.: On the finite and general implication problems of independence atoms and keys. J. Comput. Syst. Sci. 82(5), 856–877 (2016)
Herrmann, C.: On the undecidability of implications between embedded multivalued database dependencies. Inf. Comput. 122(2), 221–235 (1995)
Hodges, W.: Compositional semantics for a language of imperfect information. J. Interest Group Pure Appl. Logics 5(4), 539–563 (1997)
Kanellakis, P.C.: Elements of relational database theory. In: Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics (B), pp. 1073–1156. MIT Press, Cambridge (1990)
Kontinen, J., Kuusisto, A., Virtema, J.: Decidability of predicate logics with team semantics. In: Proceedings of MFCS 2016, pp. 60:1–60:14 (2016)
Kontinen, J., Link, S., Väänänen, J.: Independence in database relations. In: Libkin, L., Kohlenbach, U., de Queiroz, R. (eds.) WoLLIC 2013. LNCS, vol. 8071, pp. 179–193. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39992-3_17
Kontinen, J., Väänänen, J.: On definability in dependence logic. J. Logic Lang. Inf. 3(18), 317–332 (2009)
Kontinen, J., Väänänen, J.: Axiomatizing first-order consequences in dependence logic. Ann. Pure Appl. Logic 164(11), 1101–1117 (2013)
Kuusisto, A.: A double team semantics for generalized quantifiers. J. Logic Lang. Inf. 24(2), 149–191 (2015)
Sagiv, Y., Walecka, S.F.: Subset dependencies and a completeness result for a subclass of embedded multivalued dependencies. J. ACM 29(1), 103–117 (1982)
Parker Jr., D.S., Parsaye-Ghomi, K.: Inferences involving embedded multivalued dependencies and transitive dependencies. In: Proceedings of the 1980 ACM SIGMOD International Conference on Management of Data, pp. 52–57 (1980)
Väänänen, J.: Dependence Logic. Cambridge University Press, New York (2007)
Väänänen, J.: The logic of approximate dependence. In: Başkent, C., Moss, L.S., Ramanujam, R. (eds.) Rohit Parikh on Logic, Language and Society, vol. 11, pp. 227–234. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-47843-2_12
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Hannula, M., Kontinen, J., Virtema, J. (2018). Polyteam Semantics. In: Artemov, S., Nerode, A. (eds) Logical Foundations of Computer Science. LFCS 2018. Lecture Notes in Computer Science(), vol 10703. Springer, Cham. https://doi.org/10.1007/978-3-319-72056-2_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-72056-2_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-72055-5
Online ISBN: 978-3-319-72056-2
eBook Packages: Computer ScienceComputer Science (R0)