[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Polyteam Semantics

  • Conference paper
  • First Online:
Logical Foundations of Computer Science (LFCS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10703))

Included in the following conference series:

  • 606 Accesses

Abstract

Team semantics is the mathematical framework of modern logics of dependence and independence in which formulae are interpreted by sets of assignments (teams) instead of single assignments as in first-order logic. In order to deepen the fruitful interplay between team semantics and database dependency theory, we define Polyteam Semantics in which formulae are evaluated over a family of teams. We begin by defining a novel polyteam variant of dependence atoms and give a finite axiomatisation for the associated implication problem. We also characterise the expressive power of poly-dependence logic by properties of polyteams that are downward closed and definable in existential second-order logic (\(\mathsf {ESO}\)). The analogous result is shown to hold for poly-independence logic and all \(\mathsf {ESO}\)-definable properties.

This research was supported by a Marsden grant from Government funding, administered by the Royal Society of New Zealand, and grants 292767 and 308712 of the Academy of Finland.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Armstrong, W.W.: Dependency structures of data base relationships. In: Proceedings of IFIP World Computer Congress, pp. 580–583 (1974)

    Google Scholar 

  2. Casanova, M.A., Fagin, R., Papadimitriou, C.H.: Inclusion dependencies and their interaction with functional dependencies. J. Comput. Syst. Sci. 28(1), 29–59 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Durand, A., Hannula, M., Kontinen, J., Meier, A., Virtema, J.: Approximation and dependence via multiteam semantics. In: Gyssens, M., Simari, G. (eds.) FoIKS 2016. LNCS, vol. 9616, pp. 271–291. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30024-5_15

    Chapter  Google Scholar 

  4. Durand, A., Kontinen, J., Vollmer, H.: Expressivity and complexity of dependence logic. In: Abramsky, S., Kontinen, J., Väänänen, J., Vollmer, H. (eds.) Dependence Logic: Theory and Applications, pp. 5–32. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31803-5_2

    Chapter  Google Scholar 

  5. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and query answering. Theoret. Comput. Sci. 336(1), 89–124 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Galliani, P.: Inclusion and exclusion dependencies in team semantics: on some logics of imperfect information. Ann. Pure Appl. Logic 163(1), 68–84 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Galliani, P., Hella, L.: Inclusion logic and fixed point logic. In: Proceedings of CSL, pp. 281–295 (2013)

    Google Scholar 

  8. Geiger, D., Paz, A., Pearl, J.: Axioms and algorithms for inferences involving probabilistic independence. Inf. Comput. 91(1), 128–141 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Grädel, E., Väänänen, J.A.: Dependence and independence. Studia Logica 101(2), 399–410 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hannula, M.: Axiomatizing first-order consequences in independence logic. Ann. Pure Appl. Logic 166(1), 61–91 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hannula, M.: Reasoning about embedded dependencies using inclusion dependencies. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol. 9450, pp. 16–30. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48899-7_2

    Chapter  Google Scholar 

  12. Hannula, M., Kontinen, J.: A finite axiomatization of conditional independence and inclusion dependencies. Inf. Comput. 249, 121–137 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hannula, M., Kontinen, J., Link, S.: On the finite and general implication problems of independence atoms and keys. J. Comput. Syst. Sci. 82(5), 856–877 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Herrmann, C.: On the undecidability of implications between embedded multivalued database dependencies. Inf. Comput. 122(2), 221–235 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hodges, W.: Compositional semantics for a language of imperfect information. J. Interest Group Pure Appl. Logics 5(4), 539–563 (1997)

    MathSciNet  MATH  Google Scholar 

  16. Kanellakis, P.C.: Elements of relational database theory. In: Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics (B), pp. 1073–1156. MIT Press, Cambridge (1990)

    Google Scholar 

  17. Kontinen, J., Kuusisto, A., Virtema, J.: Decidability of predicate logics with team semantics. In: Proceedings of MFCS 2016, pp. 60:1–60:14 (2016)

    Google Scholar 

  18. Kontinen, J., Link, S., Väänänen, J.: Independence in database relations. In: Libkin, L., Kohlenbach, U., de Queiroz, R. (eds.) WoLLIC 2013. LNCS, vol. 8071, pp. 179–193. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39992-3_17

    Google Scholar 

  19. Kontinen, J., Väänänen, J.: On definability in dependence logic. J. Logic Lang. Inf. 3(18), 317–332 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kontinen, J., Väänänen, J.: Axiomatizing first-order consequences in dependence logic. Ann. Pure Appl. Logic 164(11), 1101–1117 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kuusisto, A.: A double team semantics for generalized quantifiers. J. Logic Lang. Inf. 24(2), 149–191 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sagiv, Y., Walecka, S.F.: Subset dependencies and a completeness result for a subclass of embedded multivalued dependencies. J. ACM 29(1), 103–117 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  23. Parker Jr., D.S., Parsaye-Ghomi, K.: Inferences involving embedded multivalued dependencies and transitive dependencies. In: Proceedings of the 1980 ACM SIGMOD International Conference on Management of Data, pp. 52–57 (1980)

    Google Scholar 

  24. Väänänen, J.: Dependence Logic. Cambridge University Press, New York (2007)

    Book  MATH  Google Scholar 

  25. Väänänen, J.: The logic of approximate dependence. In: Başkent, C., Moss, L.S., Ramanujam, R. (eds.) Rohit Parikh on Logic, Language and Society, vol. 11, pp. 227–234. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-47843-2_12

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonni Virtema .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hannula, M., Kontinen, J., Virtema, J. (2018). Polyteam Semantics. In: Artemov, S., Nerode, A. (eds) Logical Foundations of Computer Science. LFCS 2018. Lecture Notes in Computer Science(), vol 10703. Springer, Cham. https://doi.org/10.1007/978-3-319-72056-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72056-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72055-5

  • Online ISBN: 978-3-319-72056-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics