[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Polytopic Graph of Latent Relations

A Multiscale Structure Model for Music Segments

  • Conference paper
  • First Online:
Mathematics and Computation in Music (MCM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10527))

Included in the following conference series:

  • 1144 Accesses

Abstract

Musical relations and dependencies between events within a musical passage may be better explained as a graph rather than in a sequential framework. This article develops a multiscale structure model for music segments, called Polytopic Graph of Latent Relations (PGLR) as a way to describe nested systems of latent dependencies within the musical flow. The approach is presented conceptually and algorithmically, together with an extensive evaluation on a large set of chord sequences from a corpus of pop songs. Our results illustrate the efficiency of the proposed model in capturing structural information within such data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 43.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 54.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This confirms preliminary results formerly obtained on a much smaller corpus of 45 chord sequences [10].

References

  1. Bimbot, F., Deruty, E., Sargent, G., Vincent, E.: System & Contrast: a polymorphous model of the inner organization of structural segments within music pieces. Music Percept. 33, 631–661 (2016). (former version published in 2012 as Research Report IRISA PI-1999. hal-01188244)

    Article  Google Scholar 

  2. Brown, P.F., Pietra, V.J.D., Mercer, R.L., Pietra, S.A.D., Lai, J.C.: An estimate of an upper bound for the entropy of English. Comput. Linguist. 18(1), 31–40 (1992)

    Google Scholar 

  3. Cohn, R.: Audacious Euphony: Chromatic Harmony and the Triad’s Second Nature. Oxford University Press, Oxford (2011)

    Google Scholar 

  4. Deruty, E., Bimbot, F., Van Wymeersch, B.: Methodological and musicological investigation of the System & Contrast model for musical form description. Research Report RR-8510, INRIA (2013). hal-00965914

    Google Scholar 

  5. Goto, M., Hashiguchi, H., Nishimura, T., Oka, R.: RWC music database: popular, classical and jazz music databases. In: ISMIR 2002, pp. 287–288 (2002)

    Google Scholar 

  6. Grunwald, P., Vitányi, P.: Shannon information and Kolmogorov complexity. arXiv preprint arXiv:cs/0410002 (2004)

  7. Guichaoua, C.: Modèles de compression et critères de complexité pour la description et l’inférence de structure musicale. Ph.D. thesis, Rennes 1, 19 September 2017. Directed by F. Bimbot

    Google Scholar 

  8. Lerdahl, F., Jackendoff, R.: An overview of hierarchical structure in music. Music Percept. Interdisc. J. 1(2), 229–252 (1983)

    Article  Google Scholar 

  9. Lewin, D.: Some ideas about voice-leading between PCSets. J. Music Theory 42(1), 15–72 (1998)

    Article  Google Scholar 

  10. Louboutin, C., Bimbot, F.: Description of chord progressions by minimal transport graphs using the System & Contrast model. In: ICMC, Utrecht, NL (2016)

    Google Scholar 

  11. Louboutin, C., Meredith, D.: Using general-purpose compression algorithms for music analysis. J. New Music Res. 45, 1–16 (2016)

    Article  Google Scholar 

  12. Mavromatis, P.: Minimum description length modelling of musical structure. J. Math. Music 3(3), 117–136 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Meredith, D.: Music analysis and Kolmogorov complexity. In: Proceedings of the 19th Colloquio d’Informatica Musicale (XIX CIM) (2012)

    Google Scholar 

  14. Narmour, E.: The Analysis and Cognition of Melodic Complexity: The Implication-Realization Model. University of Chicago Press, Chicago (1992)

    Google Scholar 

  15. Pearce, M.T.: The construction and evaluation of statistical models of melodic structure in music perception and composition. City University London (2005)

    Google Scholar 

  16. Straus, J.N.: Uniformity, balance, and smoothness in atonal voice leading. Music Theory Spectrum 25(2), 305–352 (2003)

    Article  Google Scholar 

  17. Temperley, D.: Probabilistic models of melodic interval. Music Percept. 32(1), 85–99 (2014)

    Article  Google Scholar 

  18. Tymoczko, D.: The geometry of musical chords. Science 313(5783), 72–74 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tymoczko, D.: Scale theory, serial theory and voice leading. Music Anal. 27(1), 1–49 (2008)

    Article  Google Scholar 

  20. Vitányi, P.M., Li, M.: Minimum description length induction, Bayesianism, and Kolmogorov complexity. IEEE Trans. Inf. Theory 46(2), 446–464 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Weitzmann, C.F., Saslaw, J.K.: Two monographs by Carl Friedrich Weitzmann: Part I: “The Augmented Triad” (1853). Theory Pract. 29, 133–228 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corentin Louboutin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Louboutin, C., Bimbot, F. (2017). Polytopic Graph of Latent Relations. In: Agustín-Aquino, O., Lluis-Puebla, E., Montiel, M. (eds) Mathematics and Computation in Music. MCM 2017. Lecture Notes in Computer Science(), vol 10527. Springer, Cham. https://doi.org/10.1007/978-3-319-71827-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71827-9_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71826-2

  • Online ISBN: 978-3-319-71827-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics