[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Cooperative Multi-agent Control Using Deep Reinforcement Learning

  • Conference paper
  • First Online:
Autonomous Agents and Multiagent Systems (AAMAS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10642))

Included in the following conference series:

Abstract

This work considers the problem of learning cooperative policies in complex, partially observable domains without explicit communication. We extend three classes of single-agent deep reinforcement learning algorithms based on policy gradient, temporal-difference error, and actor-critic methods to cooperative multi-agent systems. To effectively scale these algorithms beyond a trivial number of agents, we combine them with a multi-agent variant of curriculum learning. The algorithms are benchmarked on a suite of cooperative control tasks, including tasks with discrete and continuous actions, as well as tasks with dozens of cooperating agents. We report the performance of the algorithms using different neural architectures, training procedures, and reward structures. We show that policy gradient methods tend to outperform both temporal-difference and actor-critic methods and that curriculum learning is vital to scaling reinforcement learning algorithms in complex multi-agent domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tan, M.: Multi-agent reinforcement learning: independent vs. cooperative agents. In: International Conference on Machine Learning (ICML), pp. 330–337 (1993)

    Google Scholar 

  2. Panait, L., Luke, S.: Cooperative multi-agent learning: the state of the art. In: International Conference on Autonomous Agents and Multiagent Systems (AAMAS), vol. 11(3), pp. 387–434 (2005)

    Google Scholar 

  3. Bloembergen, D., Tuyls, K., Hennes, D., Kaisers, M.: Evolutionary dynamics of multi-agent learning: a survey. J. Artif. Intell. Res. 53, 659–697 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Amato, C., Chowdhary, G., Geramifard, A., Ure, N.K., Kochenderfer, M.J.: Decentralized control of partially observable Markov decision processes. In: IEEE Conference on Decision and Control (CDC), Florence, Italy (2013)

    Google Scholar 

  5. Bernstein, D.S., Zilberstein, S., Immerman, N.: The complexity of decentralized control of Markov decision processes. In: Conference on Uncertainty in Artificial Intelligence (UAI), pp. 32–37 (2000)

    Google Scholar 

  6. Banerjee, B., Lyle, J., Kraemer, L., Yellamraju, R.: Sample bounded distributed reinforcement learning for decentralized POMDPs. In: AAAI Conference on Artificial Intelligence (AAAI) (2012)

    Google Scholar 

  7. Omidshafiei, S., Agha-mohammadi, A.-A., Amato, C., Liu, S.-Y., How, J.P., Vian, J.: Graph-based cross entropy method for solving multi-robot decentralized POMDPs. In: IEEE International Conference on Robotics and Automation (ICRA) (2016)

    Google Scholar 

  8. Tesauro, G.: Extending Q-learning to general adaptive multi-agent systems. In: Advances in Neural Information Processing Systems (NIPS) (2003)

    Google Scholar 

  9. Lin, L.-J.: Reinforcement learning for robots using neural networks, Ph.D. dissertation. Carnegie Mellon University (1992)

    Google Scholar 

  10. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  11. Levine, S., Finn, C., Darrell, T., Abbeel, P.: End-to-end training of deep visuomotor policies. J. Mach. Learn. 17(39), 1–40 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Schulman, J., Levine, S., Abbeel, P., Jordan, M., Moritz, P.: Trust region policy optimization. In: International Conference on Machine Learning (ICML) (2015)

    Google Scholar 

  13. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., Wierstra, D.: Continuous control with deep reinforcement learning, arXiv preprint arXiv:1509.02971 (2015)

  14. Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T.P., Harley, T., Silver, D., Kavukcuoglu, K.: Asynchronous methods for deep reinforcement learning, arXiv preprint arXiv:1602.01783 (2016)

  15. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: International Conference on Machine Learning (ICML), pp. 41–48 (2009)

    Google Scholar 

  16. Busoniu, L., Babuska, R., Schutter, B.D.: Multi-agent reinforcement learning: a survey. In: International Conference on Control, Automation, Robotics and Vision, vol. 527, pp. 1–6 (2006)

    Google Scholar 

  17. Ono, N., Fukumoto, K.: A modular approach to multi-agent reinforcement learning. In: Weiß, G. (ed.) LDAIS/LIOME -1996. LNCS, vol. 1221, pp. 25–39. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-62934-3_39

    Chapter  Google Scholar 

  18. Guestrin, C., Lagoudakis, M., Parr, R.: Coordinated reinforcement learning. In: International Conference on Machine Learning (ICML), vol. 2, pp. 227–234 (2002)

    Google Scholar 

  19. Lauer, M., Riedmiller, M.: An algorithm for distributed reinforcement learning in cooperative multi-agent systems. In: International Conference on Machine Learning (ICML), pp. 535–542 (2000)

    Google Scholar 

  20. Singh, S.P., Jaakkola, T.S., Jordan, M.I.: Learning without state-estimation in partially observable markovian decision processes. In: International Conference on Machine Learning (ICML) (1994)

    Google Scholar 

  21. Peshkin, L., Kim, K.-E., Meuleau, N., Kaelbling, L.P.: Learning to cooperate via policy search. In: Conference on Uncertainty in Artificial Intelligence (UAI), pp. 489–496 (2000)

    Google Scholar 

  22. Fernández, F., Parker, L.E.: Learning in large cooperative multi-robot domains. Int. J. Robot. Autom. 16(4), 217–226 (2001)

    Google Scholar 

  23. Tamakoshi, H., Ishii, S.: Multiagent reinforcement learning applied to a chase problem in a continuous world. Artif. Life Robot. 5(4), 202–206 (2001)

    Article  Google Scholar 

  24. Das, A.K., Fierro, R., Kumar, V., Ostrowski, J.P., Spletzer, J., Taylor, C.J.: A vision-based formation control framework. IEEE Trans. Robot. Autom. 18(5), 813–825 (2002)

    Article  Google Scholar 

  25. Cortes, J., Martinez, S., Karatas, T., Bullo, F.: Coverage control for mobile sensing networks. In: IEEE International Conference on Robotics and Automation (ICRA), vol. 2, pp. 1327–1332. IEEE (2002)

    Google Scholar 

  26. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95(1), 215–233 (2007)

    Article  Google Scholar 

  27. Tampuu, A., Matiisen, T., Kodelja, D., Kuzovkin, I., Korjus, K., Aru, J., Aru, J., Vicente, R.: Multiagent cooperation and competition with deep reinforcement learning, arXiv preprint arXiv:1511.08779 (2015)

  28. Foerster, J.N., Assael, Y.M., de Freitas, N., Whiteson, S.: Learning to communicate with deep multi-agent reinforcement learning. In: Advances in Neural Information Processing Systems (NIPS) (2016)

    Google Scholar 

  29. Sukhbaatar, S., Szlam, A., Fergus, R.: Learning multiagent communication with backpropagation. In: Advances in Neural Information Processing Systems (NIPS) (2016)

    Google Scholar 

  30. Ng, A.Y., Harada, D., Russell, S.: Policy invariance under reward transformations: theory and application to reward shaping. In: International Conference on Machine Learning (ICML), vol. 99, pp. 278–287 (1999)

    Google Scholar 

  31. Bagnell, D., Ng, A.Y.: On local rewards and scaling distributed reinforcement learning. In: Advances in Neural Information Processing Systems, pp. 91–98 (2005)

    Google Scholar 

  32. Vidal, R., Shakernia, O., Kim, H.J., Shim, D.H., Sastry, S.: Probabilistic pursuit-evasion games: theory, implementation, and experimental evaluation. IEEE Trans. Robot. Autom. 18(5), 662–669 (2002)

    Article  Google Scholar 

  33. Ho, J., Gupta, J.K., Ermon, S.: Model-free imitation learning with policy optimization. In: International Conference on Machine Learning (ICML) (2016)

    Google Scholar 

  34. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., Zaremba, W.: Openai gym (2016)

    Google Scholar 

  35. Schulman, J., Moritz, P., Levine, S., Jordan, M., Abbeel, P.: High-dimensional continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438 (2015)

  36. Tieleman, T., Hinton, G.: Lecture 6.5-RmsProp: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural Netw. Mach. Learn. 4, 26–31 (2012)

    Google Scholar 

  37. Nair, R., Tambe, M., Yokoo, M., Pynadath, D., Marsella, S.: Taming decentralized POMDPs: towards efficient policy computation for multiagent settings. In: International Joint Conference on Artificial Intelligence (IJCAI) (2003)

    Google Scholar 

  38. Hauskrecht, M.: Incremental methods for computing bounds in partially observable Markov decision processes. In: AAAI Conference on Artificial Intelligence (AAAI) (1997)

    Google Scholar 

  39. Parr, R., Russell, S.: Reinforcement learning with hierarchies of machines. In: Advances in Neural Information Processing Systems (NIPS), pp. 1043–1049 (1998)

    Google Scholar 

  40. Houthooft, R., Chen, X., Duan, Y., Schulman, J., De Turck, F., Abbeel, P.: Variational information maximizing exploration. arXiv preprint arXiv:1605.09674 (2016)

  41. Kulkarni, T.D., Narasimhan, K.R., Saeedi, A., Tenenbaum, J.B.: Hierarchical deep reinforcement learning: integrating temporal abstraction and intrinsic motivation. arXiv preprint arXiv:1604.06057 (2016)

Download references

Acknowledgements

This work was supported by Army AHPCRC grant W911NF-07-2-0027. The authors would like to thank the anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayesh K. Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gupta, J.K., Egorov, M., Kochenderfer, M. (2017). Cooperative Multi-agent Control Using Deep Reinforcement Learning. In: Sukthankar, G., Rodriguez-Aguilar, J. (eds) Autonomous Agents and Multiagent Systems. AAMAS 2017. Lecture Notes in Computer Science(), vol 10642. Springer, Cham. https://doi.org/10.1007/978-3-319-71682-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71682-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71681-7

  • Online ISBN: 978-3-319-71682-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics