Abstract
We introduce a novel approach to estimate the parameters of a mixture of two distributions. The method combines a grid approach with the method of moments and can be applied to a wide range of two-component mixture models. The grid approach enables the use of parallel computing and the method can easily be combined with resampling techniques. We derive the method for the special cases when the data are described by the mixture of two Weibull distributions or the mixture of two normal distributions, and apply the method on gene expression data from 409 \(ER+\) breast cancer patients.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Freyhult, E., Landfors, M., Önskog, J., Hvidsten, T.R., Rydén, P.: Challenges in microarray class discovery: a comprehensive examination of normalization, gene selection and clustering. BMC Bioinform. 11(1), 503 (2010)
Saeys, Y., Inza, I., Larrañaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics 23(19), 2507–2517 (2007)
McLachlan, G., Peel, D.: Finite Mixture Models. Wiley, Hoboken (2004)
Fujisawa, H., Eguchi, S.: Robust estimation in the normal mixture model. J. Stat. Plann. Infer. 136(11), 3989–4011 (2006)
Celeux, G., Chauveau, D., Diebolt, J.: Stochastic versions of the em algorithm: an experimental study in the mixture case. J. Stat. Comput. Simul. 55(4), 287–314 (1996)
Hathaway, R.J.: A constrained formulation of maximum-likelihood estimation for normal mixture distributions. Ann. Stat. 13(2), 795–800 (1985)
Woodward, W.A., Parr, W.C., Schucany, W.R., Lindsey, H.: A comparison of minimum distance and maximum likelihood estimation of a mixture proportion. J. Am. Stat. Assoc. 79(387), 590–598 (1984)
Cutler, A., Cordero-Braña, O.I.: Minimum hellinger distance estimation for finite mixture models. J. Am. Stat. Assoc. 91(436), 1716–1723 (1996)
Hunter, D.R., Wang, S., Hettmansperger, T.P.: Inference for mixtures of symmetric distributions. Ann. Stat. 35(1), 224–251 (2007)
Karlis, D., Xekalaki, E.: Choosing initial values for the em algorithm for finite mixtures. Comput. Stat. Data Anal. 41(3), 577–590 (2003)
Ramon, J., Albert, G., Baxter, L.A.: Applications of the EM algorithm to the analysis of life length data. Appl. Stat. 44(3), 323–341 (1995)
Meng, X.L., Rubin, D.B.: Maximum likelihood estimation via the ecm algorithm: a general framework. Biometrika 80(2), 267–278 (1993)
Karakoca, A., Erisoglu, U., Erisoglu, M.: A comparison of the parameter estimation methods for bimodal mixture Weibull distribution with complete data. J. Appl. Stat. 42(7), 1472–1489 (2015)
Carta, J., Ramirez, P.: Analysis of two-component mixture weibull statistics for estimation of wind speed distributions. Renew. Energy 32(3), 518–531 (2007)
Jiang, R., Murthy, D.: Mixture of weibull distributions - parametric characterization of failure rate function. Appl. Stochast. Models Bus. Ind. 14(1), 47–65 (1998)
Marin, J., Rodriguez-Bernal, M., Wiper, M.P.: Using Weibull mixture distributions to model heterogeneous survival data. Commun. Stat. - Simul. Comput. 34(3), 673–684 (2005)
Kallenberg, O.: Foundations of Modern Probability. Springer, Heidelberg (2006)
Belyaev, Y.K., Nilsson, L.: Parametric maximum likelihood estimators and resampling. Umeå universitet (1997)
Acknowledgments
This work was supported by grants from the Swedish Research Council, Dnr 340-2013-5185 (P. R.), the Kempe Foundations, Dnr JCK-1315 (D. K., P. R.), and the Faculty of Science and Technology, Umeå University (Yu. B., D. K., P. R.).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Belyaev, Y., Källberg, D., Rydén, P. (2017). The HRD-Algorithm: A General Method for Parametric Estimation of Two-Component Mixture Models. In: Rykov, V., Singpurwalla, N., Zubkov, A. (eds) Analytical and Computational Methods in Probability Theory. ACMPT 2017. Lecture Notes in Computer Science(), vol 10684. Springer, Cham. https://doi.org/10.1007/978-3-319-71504-9_41
Download citation
DOI: https://doi.org/10.1007/978-3-319-71504-9_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-71503-2
Online ISBN: 978-3-319-71504-9
eBook Packages: Computer ScienceComputer Science (R0)