[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The HRD-Algorithm: A General Method for Parametric Estimation of Two-Component Mixture Models

  • Conference paper
  • First Online:
Analytical and Computational Methods in Probability Theory (ACMPT 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10684))

  • 686 Accesses

Abstract

We introduce a novel approach to estimate the parameters of a mixture of two distributions. The method combines a grid approach with the method of moments and can be applied to a wide range of two-component mixture models. The grid approach enables the use of parallel computing and the method can easily be combined with resampling techniques. We derive the method for the special cases when the data are described by the mixture of two Weibull distributions or the mixture of two normal distributions, and apply the method on gene expression data from 409 \(ER+\) breast cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Freyhult, E., Landfors, M., Önskog, J., Hvidsten, T.R., Rydén, P.: Challenges in microarray class discovery: a comprehensive examination of normalization, gene selection and clustering. BMC Bioinform. 11(1), 503 (2010)

    Article  Google Scholar 

  2. Saeys, Y., Inza, I., Larrañaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics 23(19), 2507–2517 (2007)

    Article  Google Scholar 

  3. McLachlan, G., Peel, D.: Finite Mixture Models. Wiley, Hoboken (2004)

    MATH  Google Scholar 

  4. Fujisawa, H., Eguchi, S.: Robust estimation in the normal mixture model. J. Stat. Plann. Infer. 136(11), 3989–4011 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Celeux, G., Chauveau, D., Diebolt, J.: Stochastic versions of the em algorithm: an experimental study in the mixture case. J. Stat. Comput. Simul. 55(4), 287–314 (1996)

    Article  MATH  Google Scholar 

  6. Hathaway, R.J.: A constrained formulation of maximum-likelihood estimation for normal mixture distributions. Ann. Stat. 13(2), 795–800 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  7. Woodward, W.A., Parr, W.C., Schucany, W.R., Lindsey, H.: A comparison of minimum distance and maximum likelihood estimation of a mixture proportion. J. Am. Stat. Assoc. 79(387), 590–598 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cutler, A., Cordero-Braña, O.I.: Minimum hellinger distance estimation for finite mixture models. J. Am. Stat. Assoc. 91(436), 1716–1723 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hunter, D.R., Wang, S., Hettmansperger, T.P.: Inference for mixtures of symmetric distributions. Ann. Stat. 35(1), 224–251 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Karlis, D., Xekalaki, E.: Choosing initial values for the em algorithm for finite mixtures. Comput. Stat. Data Anal. 41(3), 577–590 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ramon, J., Albert, G., Baxter, L.A.: Applications of the EM algorithm to the analysis of life length data. Appl. Stat. 44(3), 323–341 (1995)

    Article  MATH  Google Scholar 

  12. Meng, X.L., Rubin, D.B.: Maximum likelihood estimation via the ecm algorithm: a general framework. Biometrika 80(2), 267–278 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Karakoca, A., Erisoglu, U., Erisoglu, M.: A comparison of the parameter estimation methods for bimodal mixture Weibull distribution with complete data. J. Appl. Stat. 42(7), 1472–1489 (2015)

    Article  MathSciNet  Google Scholar 

  14. Carta, J., Ramirez, P.: Analysis of two-component mixture weibull statistics for estimation of wind speed distributions. Renew. Energy 32(3), 518–531 (2007)

    Article  Google Scholar 

  15. Jiang, R., Murthy, D.: Mixture of weibull distributions - parametric characterization of failure rate function. Appl. Stochast. Models Bus. Ind. 14(1), 47–65 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Marin, J., Rodriguez-Bernal, M., Wiper, M.P.: Using Weibull mixture distributions to model heterogeneous survival data. Commun. Stat. - Simul. Comput. 34(3), 673–684 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kallenberg, O.: Foundations of Modern Probability. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  18. Belyaev, Y.K., Nilsson, L.: Parametric maximum likelihood estimators and resampling. Umeå universitet (1997)

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Swedish Research Council, Dnr 340-2013-5185 (P. R.), the Kempe Foundations, Dnr JCK-1315 (D. K., P. R.), and the Faculty of Science and Technology, Umeå University (Yu. B., D. K., P. R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Källberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Belyaev, Y., Källberg, D., Rydén, P. (2017). The HRD-Algorithm: A General Method for Parametric Estimation of Two-Component Mixture Models. In: Rykov, V., Singpurwalla, N., Zubkov, A. (eds) Analytical and Computational Methods in Probability Theory. ACMPT 2017. Lecture Notes in Computer Science(), vol 10684. Springer, Cham. https://doi.org/10.1007/978-3-319-71504-9_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71504-9_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71503-2

  • Online ISBN: 978-3-319-71504-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics