Abstract
The paper presents an experience in incorporating Big Data technologies into introductory parallel and distributed computing courses and building a service-oriented infrastructure to support practical exercises involving these technologies. The presented approach helped to provide a smooth practical experience for students with different technical background by enabling them to run and test their MapReduce and Spark programs on a provided Hadoop cluster via convenient web interfaces. This approach also enabled automation of routine actions related to submission of programs to a cluster and evaluation of programming assignments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)
White, T.: Hadoop: The Definitive Guide. O’Reilly Media Inc, Sebastopol (2012)
Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster computing with working sets. HotCloud 10(10–10), 95 (2010)
Dincer, K., Fox. G.C.: Design issues in building web-based parallel programming environments. In: 1997 Proceedings of the Sixth IEEE International Symposium on High Performance Distributed Computing, pp. 283–292. IEEE (1997)
Tourino, J., Martin, M.J., Tarrio, J., Arenaz, M.: A grid portal for an undergraduate parallel programming course. IEEE Trans. Educ. 48(3), 391–399 (2005)
Maggi, P., Sisto, R.: A grid-powered framework to support courses on distributed programming. IEEE Trans. Educ. 50(1), 27–33 (2007)
Schlarb, M., Hundt, C., Schmidt, B.: SAUCE: a web-based automated assessment tool for teaching parallel programming. In: Hunold, S., Costan, A., Giménez, D., Iosup, A., Ricci, L., Gómez Requena, M.E., Scarano, V., Varbanescu, A.L., Scott, S.L., Lankes, S., Weidendorfer, J., Alexander, M. (eds.) Euro-Par 2015. LNCS, vol. 9523, pp. 54–65. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27308-2_5
Nowicki, M., Marchwiany, M., Szpindler, M., Bała, P.: On-line service for teaching parallel programming. In: Hunold, S., Costan, A., Giménez, D., Iosup, A., Ricci, L., Gómez Requena, M.E., Scarano, V., Varbanescu, A.L., Scott, S.L., Lankes, S., Weidendorfer, J., Alexander, M. (eds.) Euro-Par 2015. LNCS, vol. 9523, pp. 78–89. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27308-2_7
Heterogeneous Parallel Programming. https://www.coursera.org/course/hetero
Gergel, V., Kustikova, V.: Internet-oriented educational course “Introduction to Parallel Computing”: a simple way to start. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2016. CCIS, vol. 687, pp. 291–303. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-55669-7_23
Garrity, P., Yates, T., Brown, R., Shoop, E.: Webmapreduce: an accessible and adaptable tool for teaching map-reduce computing. In: Proceedings of the 42nd ACM Technical Symposium On Computer Science Education, pp. 183–188. ACM (2011)
Hue. http://gethue.com/
Databricks Platform. https://databricks.com/product/databricks
Cloudera Data Science Workbench. https://www.cloudera.com/products/data-science-and-engineering/data-science-workbench.html
Sukhoroslov, O., Volkov, S., Afanasiev, A.: A web-based platform for publication and distributed execution of computing applications. In: 2015 14th International Symposium on Parallel and Distributed Computing (ISPDC), pp. 175–184, June 2015
Everest. http://everest.distcomp.org/
Acknowledgments
This work is supported by the Russian Science Foundation (project No. 16-11-10352).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Sukhoroslov, O. (2017). A Service-Oriented Infrastructure for Teaching Big Data Technologies. In: Voevodin, V., Sobolev, S. (eds) Supercomputing. RuSCDays 2017. Communications in Computer and Information Science, vol 793. Springer, Cham. https://doi.org/10.1007/978-3-319-71255-0_41
Download citation
DOI: https://doi.org/10.1007/978-3-319-71255-0_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-71254-3
Online ISBN: 978-3-319-71255-0
eBook Packages: Computer ScienceComputer Science (R0)