[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Bringing Order to the Separation Logic Jungle

  • Conference paper
  • First Online:
Programming Languages and Systems (APLAS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10695))

Included in the following conference series:

Abstract

Research results from so-called “classical” separation logics are not easily ported to so-called “intuitionistic” separation logics, and vice versa. Basic questions like, “Can the frame rule be proved independently of whether the programming language is garbage-collected?” “Can amortized resource analysis be ported from one separation logic to another?” should be straightforward. But they are not. Proofs done in a particular separation logic are difficult to generalize. We argue that this limitation is caused by incompatible semantics. For example, emp sometimes holds everywhere and sometimes only on units.

In this paper, we introduce a unifying semantics and build a framework that allows to reason parametrically over all separation logics. Many separation algebras in the literature are accompanied, explicitly or implicitly, by a preorder. Our key insight is to axiomatize the interaction between the join relation and the preorder. We prove every separation logic to be sound and complete with respect to this unifying semantics. Further, our framework enables us to generalize the sound0.ness proofs for the frame rule and CSL. It also reveals a new world of meaningful intermediate separation logics between “intuitionistic” and “classical”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Pottier also adds a passive execution order which constitutes what he calls a monotonic separation algebra. The idea is similar but goes in a different direction, aiming for a type system and not a separation logic.

  2. 2.

    Coq development: https://github.com/QinxiangCao/UnifySL. Appendix: http://www.cs.princeton.edu/~appel/papers/bringing-order-appendix.pdf.

References

  1. Appel, A.W., Dockins, R., Hobor, A., Beringer, L., Dodds, J., Stewart, G., Blazy, S., Leroy, X.: Program Logics for Certified Compilers, Cambridge (2014)

    Google Scholar 

  2. Appel, A.W., McAllester, D.A.: An indexed model of recursive types for foundational proof-carrying code. ACM Trans. Program. Lang. Syst. 23(5), 657–683 (2001)

    Article  Google Scholar 

  3. Appel, A.W., Melliès, P.-A., Richards, C.D., Vouillon, J.: A very modal model of a modern, major, general type system. In: Proceedings of the 34th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (2007)

    Google Scholar 

  4. Atkey, R.: Amortised resource analysis with separation logic. Logical Methods Comput. Sci. 7(2) (2011)

    Google Scholar 

  5. Bengtson, J., Jensen, J.B., Sieczkowski, F., Birkedal, L.: Verifying object-oriented programs with higher-order separation logic in Coq. In: van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 22–38. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22863-6_5

    Chapter  Google Scholar 

  6. Birkedal, L., Reus, B., Schwinghammer, J., Støvring, K., Thamsborg, J., Yang, H.: Step-indexed Kripke models over recursive worlds. In: Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (2011)

    Google Scholar 

  7. Brookes, S.: A semantics for concurrent separation logic. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 16–34. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28644-8_2

    Chapter  Google Scholar 

  8. Brotherston, J., Kanovich, M.: Undecidability of propositional separation logic and its neighbours. In: 2010 25th Annual IEEE Symposium on Logic in Computer Science (LICS), pp. 130–139. IEEE (2010)

    Google Scholar 

  9. Brotherston, J., Villard, J.: Parametric completeness for separation theories. In: The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (2014)

    Google Scholar 

  10. Calcagno, C., O’Hearn, P.W., Yang, H.: Local action and abstract separation logic. In: Proceedings of the 22nd Annual IEEE Symposium on Logic in Computer Science, LICS 2007, pp. 366–378, Washington, DC, USA. IEEE Computer Society (2007)

    Google Scholar 

  11. Chen, H., Ziegler, D., Chajed, T., Chlipala, A., Kaashoek, M.F., Zeldovich, N.: Using crash hoare logic for certifying the FSCQ file system. In: Miller, E.L., Hand, S. (eds.) Proceedings of the 25th Symposium on Operating Systems Principles, SOSP 2015, Monterey, CA, USA, 4–7 October 2015, pp. 18–37. ACM (2015)

    Google Scholar 

  12. Dinsdale-Young, T., Birkedal, L., Gardner, P., Parkinson, M.J., Yang, H.: Views: compositional reasoning for concurrent programs. In: The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (2013)

    Google Scholar 

  13. Dockins, R., Hobor, A., Appel, A.W.: A fresh look at separation algebras and share accounting. In: Hu, Z. (ed.) APLAS 2009. LNCS, vol. 5904, pp. 161–177. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10672-9_13

    Chapter  Google Scholar 

  14. Galmiche, D., Larchey-Wendling, D.: Expressivity properties of Boolean BI through relational models. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 357–368. Springer, Heidelberg (2006). https://doi.org/10.1007/11944836_33

    Chapter  Google Scholar 

  15. Galmiche, D., Méry, D., Pym, D.J.: The semantics of BI and resource tableaux. Mathe. Struct. Comput. Sci. 15(6), 1033–1088 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gotsman, A., Berdine, J., Cook, B.: Precision and the conjunction rule in concurrent separation logic. Electr. Notes Theor. Comput. Sci. 276, 171–190 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hobor, A., Dockins, R., Appel, A.W.: A theory of indirection via approximation. In: Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (2010)

    Google Scholar 

  18. Hur, C.-K., Dreyer, D., Vafeiadis, V.: Separation logic in the presence of garbage collection. In: Proceedings of the 26th Annual IEEE Symposium on Logic in Computer Science, LICS 2011, 21–24 June 2011, Toronto, Ontario, Canada, pp. 247–256 (2011)

    Google Scholar 

  19. Ishtiaq, S.S., O’Hearn, P.W.: BI as an assertion language for mutable data structures. In: Conference Record of POPL 2001: The 28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (2001)

    Google Scholar 

  20. Jensen, J.B.: Techniques for model construction in separation logic. Ph.D. thesis, IT University of Copenhagen, March 2014

    Google Scholar 

  21. Jensen, J.B., Birkedal, L.: Fictional separation logic. In: Programming Languages and Systems - 21st European Symposium on Programming (2012)

    Google Scholar 

  22. Jung, R., Swasey, D., Sieczkowski, F., Svendsen, K., Turon, A., Birkedal, L., Dreyer, D.: Iris: Monoids and invariants as an orthogonal basis for concurrent reasoning. In: Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (2015)

    Google Scholar 

  23. Kripke, S.A.: Semantical analysis of intuitionistic logic i. Studies Logic Found. Mathe. 50, 92–130 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  24. Larchey-Wendling, D., Galmiche, D.: Exploring the relation between intuitionistic BI and boolean BI: an unexpected embedding. Mathe. Struct. Comput. Sci. 19(3), 435–500 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. O’Hearn, P.W., Pym, D.J.: The logic of bunched implications. Bull. Symbolic Logic 5(2), 215–244 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. O’Hearn, P.W., Yang, H., Reynolds, J.C.: Separation and information hiding. In: Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2004, Venice, Italy, 14–16 January 2004, pp. 268–280 (2004)

    Google Scholar 

  27. Parkinson, M.: The next 700 separation logics. In: Leavens, G.T., O’Hearn, P., Rajamani, S.K. (eds.) VSTTE 2010. LNCS, vol. 6217, pp. 169–182. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15057-9_12

    Chapter  Google Scholar 

  28. Parkinson, M.J., Summers, A.J.: The relationship between separation logic and implicit dynamic frames. In: Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602, pp. 439–458. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19718-5_23

    Chapter  Google Scholar 

  29. Pilkiewicz, A., Pottier, F.: The essence of monotonic state. In: Proceedings of TLDI 2011: 2011 ACM SIGPLAN International Workshop on Types in Languages Design and Implementation, pp. 73–86 (2011)

    Google Scholar 

  30. Pottier, F.: Syntactic soundness proof of a type-and-capability system with hidden state. J. Funct. Program. 23(1), 38–144 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pym, D.J., O’Hearn, P.W., Yang, H.: Possible worlds and resources: the semantics of BI. Theor. Comput. Sci. 315(1), 257–305 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Reynolds, J.C.: Intuitionistic reasoning about shared mutable data structure. In: Millennial Perspectives in Computer Science, pp. 303–321. Palgrave (2000)

    Google Scholar 

  33. Simpson, A.K.: The proof theory and semantics of intuitionistic modal logic. Technical report, University of Edinburgh, College of Science and Engineering, School of Informatics (1994)

    Google Scholar 

Download references

Acknowledgment

This research was supported in part by NSF Grant CCF-1521602.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinxiang Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cao, Q., Cuellar, S., Appel, A.W. (2017). Bringing Order to the Separation Logic Jungle. In: Chang, BY. (eds) Programming Languages and Systems. APLAS 2017. Lecture Notes in Computer Science(), vol 10695. Springer, Cham. https://doi.org/10.1007/978-3-319-71237-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71237-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71236-9

  • Online ISBN: 978-3-319-71237-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics